a94f7b93251013d51d9918c27ab2569eb526a494,examples/convolutional_model.py,,,#,3
Before Change
print("Processing data...")
imageProcessor = ImageProcessor(image_data, target_dimensions=target_dimensions)
image_array = imageProcessor.process_training_data()
image_data = list()
for image in image_array:
image_data.append(np.array([image]).reshape((list(target_dimensions)+[channels])))
image_data = np.array(image_data)
if verbose:
print("Processed image data shape: " + str(image_data.shape))
After Change
model = ConvolutionalNN(target_dimensions, channels, label_count)
// model.fit(image_data, labels, validation_split)
model.fit_generator(train_gen.generate(target_dimensions, batch_size=5),
test_gen.generate(target_dimensions, batch_size=5),
epochs=10)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 8
Instances
Project Name: thoughtworksarts/EmoPy
Commit Name: a94f7b93251013d51d9918c27ab2569eb526a494
Time: 2018-02-14
Author: puneethp@thoughtworks.com
File Name: examples/convolutional_model.py
Class Name:
Method Name:
Project Name: AIRLab-POLIMI/mushroom
Commit Name: 906ba34449e0f19b7f3b674d5e005a1903d0642e
Time: 2017-11-10
Author: carloderamo@gmail.com
File Name: examples/mountain_car.py
Class Name:
Method Name: experiment
Project Name: AIRLab-POLIMI/mushroom
Commit Name: 906ba34449e0f19b7f3b674d5e005a1903d0642e
Time: 2017-11-10
Author: carloderamo@gmail.com
File Name: tests/mountain_car/mountain_car.py
Class Name:
Method Name: experiment