obs_var,
state_info_vars=None,
name="dist_info_sym"):
with enclosing_scope(self.name, name):
mean_var, std_param_var = L.get_output(
[self._l_mean, self._l_std_param], obs_var)
if self.min_std_param is not None:
After Change
return True
def dist_info_sym(self, obs_var, state_info_vars=None, name=None):
with tf.name_scope(name, "dist_info_sym", [obs_var]):
with tf.name_scope(self._mean_network_name, values=[obs_var]):
mean_var = L.get_output(self._l_mean, obs_var)
with tf.name_scope(self._std_network_name, values=[obs_var]):
std_param_var = L.get_output(self._l_std_param, obs_var)
if self.min_std_param is not None:
std_param_var = tf.maximum(std_param_var, self.min_std_param)