ccb227291ac951205df5fdf5812298606e0aa26f,lazyflow/operators/classifierOperators.py,OpTrainPixelwiseClassifierBlocked,execute,#OpTrainPixelwiseClassifierBlocked#Any#Any#Any#Any#,133
Before Change
assert halo_shape[-1] == 0, "Didn"t expect a non-zero halo for channel dimension."
// Expand block by halo, then clip to image bounds
block_label_roi = numpy.array( block_label_roi )
block_label_roi[0] -= halo_shape
block_label_roi[1] += halo_shape
block_label_roi = getIntersection( block_label_roi, roiFromShape(image_slot.meta.shape) )
block_image_roi = numpy.array( block_label_roi )
assert (block_image_roi[:, -1] == [0,1]).all()
num_channels = image_slot.meta.shape[-1]
After Change
block_label_bb_roi = bb_roi_within_block + block_label_roi[0]
// Double-check that there is at least 1 non-zero label in the block.
if (block_label_bb_roi[1] > block_label_bb_roi[0]).all():
// Ask for the halo needed by the classifier
axiskeys = image_slot.meta.getAxisKeys()
halo_shape = classifier_factory.get_halo_shape(axiskeys)
assert len(halo_shape) == len( block_label_roi[0] )
assert halo_shape[-1] == 0, "Didn"t expect a non-zero halo for channel dimension."
// Expand block by halo, but keep clipped to image bounds
padded_label_roi, bb_roi_within_padded = enlargeRoiForHalo( *block_label_bb_roi,
shape=label_slot.meta.shape,
sigma=halo_shape,
window=1,
return_result_roi=True )
// Copy labels to new array, which has size == bounding-box + halo
padded_label_data = numpy.zeros( padded_label_roi[1] - padded_label_roi[0], label_slot.meta.dtype )
padded_label_data[roiToSlice(*bb_roi_within_padded)] = block_label_data[roiToSlice(*bb_roi_within_block)]
padded_image_roi = numpy.array( padded_label_roi )
assert (padded_image_roi[:, -1] == [0,1]).all()
num_channels = image_slot.meta.shape[-1]
padded_image_roi[:, -1] = [0, num_channels]
// Ensure the results are plain ndarray, not VigraArray,
// which some classifiers might have trouble with.
padded_image_data = numpy.asarray( image_slot(*padded_image_roi).wait() )
label_data_blocks.append( padded_label_data )
image_data_blocks.append( padded_image_data )
if len(image_data_blocks) == 0:
result[0] = None
else:
axistags = self.Images[0].meta.axistags
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 8
Instances
Project Name: ilastik/ilastik
Commit Name: ccb227291ac951205df5fdf5812298606e0aa26f
Time: 2015-03-19
Author: bergs@janelia.hhmi.org
File Name: lazyflow/operators/classifierOperators.py
Class Name: OpTrainPixelwiseClassifierBlocked
Method Name: execute
Project Name: HazyResearch/fonduer
Commit Name: 1d6771befb95f4ae94f308899633294a003dcfd6
Time: 2020-07-24
Author: hiromu.hota@hal.hitachi.com
File Name: src/fonduer/utils/data_model_utils/structural.py
Class Name:
Method Name: common_ancestor
Project Name: ilastik/ilastik
Commit Name: ccb227291ac951205df5fdf5812298606e0aa26f
Time: 2015-03-19
Author: bergs@janelia.hhmi.org
File Name: lazyflow/operators/classifierOperators.py
Class Name: OpTrainPixelwiseClassifierBlocked
Method Name: execute
Project Name: HazyResearch/fonduer
Commit Name: 1d6771befb95f4ae94f308899633294a003dcfd6
Time: 2020-07-24
Author: hiromu.hota@hal.hitachi.com
File Name: src/fonduer/utils/data_model_utils/structural.py
Class Name:
Method Name: lowest_common_ancestor_depth