5016a008790087d9cb47e7f91099f3dba7960ee2,mlxtend/regressor/stacking_cv_regression.py,StackingCVRegressor,fit,#StackingCVRegressor#Any#Any#Any#Any#,119
Before Change
kfold.shuffle = self.shuffle
meta_features = np.zeros((X.shape[0 ], len(self.regressors)))
for i, regr in enumerate (self.regressors) :
for train_idx, holdout_idx in kfold.split (X, y, groups) :
instance = clone(regr)
if sample_weight is None:
instance.fit(X[train_idx], y[train_idx])
else :
instance.fit(X[train_idx], y[train_idx],
sample_weight=sample_weight[train_idx])
y_pred = instance.predict(X[holdout_idx])
meta_features[holdout_idx, i] = y_pred
if self.store_train_meta_features:
self.train_meta_features_ = meta_features
After Change
if sample_weight is None:
fit_params = None
else :
fit_params = dict(sample_weight=sample_weight)
meta_features = np.column_stack([cross_val_predict(
regr, X, y, groups=groups, cv=kfold,
n_jobs=self.n_jobs, fit_params=fit_params,
pre_dispatch=self.pre_dispatch)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 9
Instances Project Name: rasbt/mlxtend
Commit Name: 5016a008790087d9cb47e7f91099f3dba7960ee2
Time: 2019-03-14
Author: 36086881+qiagu@users.noreply.github.com
File Name: mlxtend/regressor/stacking_cv_regression.py
Class Name: StackingCVRegressor
Method Name: fit
Project Name: regel/loudml
Commit Name: 0457beb9a9ab772fa3d2a4b74ca6abf98205ff4b
Time: 2018-04-30
Author: sebastien.regel@gmail.com
File Name: loudml/loudml/fingerprints.py
Class Name: FingerprintsModel
Method Name: predict
Project Name: regel/loudml
Commit Name: 0457beb9a9ab772fa3d2a4b74ca6abf98205ff4b
Time: 2018-04-30
Author: sebastien.regel@gmail.com
File Name: loudml/loudml/fingerprints.py
Class Name: FingerprintsModel
Method Name: train