80cfb0e5f889c65a972ebde6c6dae4278b5e28c1,foolbox/attacks/base.py,MinimizationAttack,__call__,#MinimizationAttack#Any#Any#Any#,340

Before Change


            early_stop = None
        else:
            early_stop = min(epsilons)
        limit_epsilons = [eps if eps is not None else ep.inf for eps in epsilons]
        del epsilons

        // run the actual attack
        xp = self.run(model, x, criterion, early_stop=early_stop, **kwargs)
        // TODO: optionally improve using a binary search?
        // TODO: optionally reduce size to the different epsilons and recompute is_adv

        is_adv = is_adversarial(xp)
        assert is_adv.shape == (N,)

        distances = self.distance(x, xp)
        assert distances.shape == (N,)

        in_limits = ep.stack(
            [distances <= epsilon for epsilon in limit_epsilons], axis=0
        )
        assert in_limits.shape == (K, N)

        success = ep.logical_and(in_limits, is_adv)
        assert success.shape == (K, N)

        xp_ = restore_type(xp)

After Change


        // run the actual attack
        xp = self.run(model, x, criterion, early_stop=early_stop, **kwargs)

        xpcs = []
        success = []
        for epsilon in epsilons:
            if epsilon is None:
                xpc = xp
            else:
                xpc = self.distance.clip_perturbation(x, xp, epsilon)
            is_adv = is_adversarial(xpc)

            xpcs.append(xpc)
            success.append(is_adv)

        success_ = ep.stack(success)
        assert success_.shape == (K, N)

        xp_ = restore_type(xp)
        xpcs_ = [restore_type(xpc) for xpc in xpcs]

        if was_iterable:
            return [xp_] * K, xpcs_, restore_type(success)
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 9

Instances


Project Name: bethgelab/foolbox
Commit Name: 80cfb0e5f889c65a972ebde6c6dae4278b5e28c1
Time: 2020-02-14
Author: git@jonasrauber.de
File Name: foolbox/attacks/base.py
Class Name: MinimizationAttack
Method Name: __call__


Project Name: tensorflow/models
Commit Name: f7b4c6de2037ebedf6bc8ea5979e81666d54534f
Time: 2020-12-01
Author: rathodv@google.com
File Name: research/object_detection/meta_architectures/center_net_meta_arch.py
Class Name:
Method Name: convert_strided_predictions_to_normalized_boxes


Project Name: kenshohara/3D-ResNets-PyTorch
Commit Name: 371a1b952acb0d2cccaf3ece7f594763d3f02e03
Time: 2018-11-02
Author: kensho.hara@aist.go.jp
File Name: datasets/videodataset.py
Class Name: VideoDataset
Method Name: __getitem__