91b4b8d0f63b52d51e019c06070c0d0195dd2005,test/test_summaries.py,TestSummaries,test_summaries,#TestSummaries#,33

Before Change


            os.rmdir(path=self.__class__.directory)

        // TODO: "dropout"
        reward_estimation = dict(horizon=dict(
            type="decaying", unit="timesteps", decay="linear", initial_value=2.0, decay_steps=3,
            final_value=4.0
        ))
        baseline_policy = dict(network=dict(type="auto", size=8, depth=1, rnn=1))
        baseline_objective = "value"
        baseline_optimizer = "adam"
        preprocessing = dict(reward=dict(type="clipping", upper=0.25))

After Change


        baseline_objective = "value"
        baseline_optimizer = "adam"
        preprocessing = dict(reward=dict(type="clipping", upper=0.25))
        exploration = dict(
            type="exponential", unit="episodes", num_steps=3, initial_value=2.0, decay_rate=0.5
        )

        agent, environment = self.prepare(
            summarizer=dict(
                directory=self.__class__.directory, labels=[
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 4

Instances


Project Name: reinforceio/tensorforce
Commit Name: 91b4b8d0f63b52d51e019c06070c0d0195dd2005
Time: 2020-05-25
Author: alexkuhnle@t-online.de
File Name: test/test_summaries.py
Class Name: TestSummaries
Method Name: test_summaries


Project Name: reinforceio/tensorforce
Commit Name: 8836649a652dc59f19245d98c5e063cb4622e4a5
Time: 2019-10-24
Author: alexkuhnle@t-online.de
File Name: tensorforce/agents/trpo.py
Class Name: TrustRegionPolicyOptimization
Method Name: __init__


Project Name: reinforceio/tensorforce
Commit Name: 8836649a652dc59f19245d98c5e063cb4622e4a5
Time: 2019-10-24
Author: alexkuhnle@t-online.de
File Name: tensorforce/agents/a2c.py
Class Name: AdvantageActorCritic
Method Name: __init__