e70bdb2d089ae283781c45b8d97963823a984baa,ch10/00_pong_pg.py,,,#,51
Before Change
kl_div_v = -((new_prob_v / prob_v).log() * prob_v).sum(dim=1).mean()
writer.add_scalar("kl", kl_div_v.data.cpu().numpy()[0], step_idx)
grad_max = 0.0
grad_means = 0.0
grad_vars = 0.0
grad_count = 0
for p in net.parameters():
grad_max = max(grad_max, p.grad.abs().max().data.cpu().numpy()[0])
grad_means += (p.grad ** 2).mean().sqrt().data.cpu().numpy()[0]
grad_vars += torch.var(p.grad).data.cpu().numpy()[0]
grad_count += 1
writer.add_scalar("baseline", baseline, step_idx)
writer.add_scalar("entropy", entropy_v.data.cpu().numpy()[0], step_idx)
writer.add_scalar("batch_scales", np.mean(batch_scales), step_idx)
writer.add_scalar("batch_scales_std", scale_std, step_idx)
After Change
kl_div_v = -((new_prob_v / prob_v).log() * prob_v).sum(dim=1).mean()
writer.add_scalar("kl", kl_div_v.data.cpu().numpy()[0], step_idx)
grads = np.concatenate([p.grad.data.cpu().numpy().flatten()
for p in net.parameters()
if p.grad is not None])
writer.add_scalar("baseline", baseline, step_idx)
writer.add_scalar("entropy", entropy_v.data.cpu().numpy()[0], step_idx)
writer.add_scalar("batch_scales", np.mean(batch_scales), step_idx)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 9
Instances
Project Name: PacktPublishing/Deep-Reinforcement-Learning-Hands-On
Commit Name: e70bdb2d089ae283781c45b8d97963823a984baa
Time: 2017-12-15
Author: max.lapan@gmail.com
File Name: ch10/00_pong_pg.py
Class Name:
Method Name:
Project Name: brian-team/brian2
Commit Name: 0ac2bf1c2cafee4cc9555c9f09a17143b05b1a88
Time: 2014-03-06
Author: dan.goodman@ens.fr
File Name: brian2/synapses/spikequeue.py
Class Name: SpikeQueue
Method Name: prepare
Project Name: pantsbuild/pants
Commit Name: e3073f0fd4cc62fef7bfbca23ffd360e2d6c8a6a
Time: 2014-02-11
Author: jsirois@twitter.com
File Name: src/python/twitter/pants/commands/goal.py
Class Name: List
Method Name: execute