faf3aa876462323f2fa721ebd633752d6489808f,sru/modules.py,SRU,forward,#SRU#Any#Any#Any#,536
Before Change
// unpack packed, if input is packed. packing and then unpacking will be slower than not
// packing at all, but makes SRU usage compatible with nn.RNN usage
orig_input = input
if isinstance(orig_input, PackedSequence):
input, batch_sizes, sorted_indices, unsorted_indices = input
length = input.size(0)
batch_size = input.size(1)
mask_pad = torch.arange(batch_size,
device=batch_sizes.device).expand(length, batch_size)
mask_pad = (mask_pad >= batch_sizes.view(length, 1)).contiguous()
else:
length = input.size(0)
batch_size = input.size(1)
batch_sizes = None
sorted_indices = None
unsorted_indices = None
// The dimensions of `input` should be: `(sequence_length, batch_size, input_size)`.
if input.dim() != 3:
raise ValueError("There must be 3 dimensions for (length, batch_size, input_size)")
if c0 is None:
After Change
// unpack packed, if input is packed. packing and then unpacking will be slower than not
// packing at all, but makes SRU usage compatible with nn.RNN usage
orig_input = input
if isinstance(orig_input, PackedSequence):
input, lengths = nn.utils.rnn.pad_packed_sequence(input)
max_length = lengths.max().item()
mask_pad = torch.ByteTensor([[0] * l + [1] * (max_length - l) for l in lengths.tolist()])
mask_pad = mask_pad.to(input.device).transpose(0, 1).contiguous()
// The dimensions of `input` should be: `(sequence_length, batch_size, input_size)`.
if input.dim() != 3:
raise ValueError("There must be 3 dimensions for (length, batch_size, input_size)")
if c0 is None:
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 6
Instances
Project Name: asappresearch/sru
Commit Name: faf3aa876462323f2fa721ebd633752d6489808f
Time: 2020-09-18
Author: taolei@csail.mit.edu
File Name: sru/modules.py
Class Name: SRU
Method Name: forward
Project Name: interactiveaudiolab/nussl
Commit Name: 2ffbfa3a6bd3b8de8e21a762489346054dcd9ccc
Time: 2020-03-12
Author: prem@u.northwestern.edu
File Name: nussl/separation/deep/deep_mask_estimation.py
Class Name: DeepMaskEstimation
Method Name: extract_features
Project Name: CellProfiler/CellProfiler
Commit Name: aadd7d651389f213aaf33b08ab6f533a3ecc59db
Time: 2011-08-04
Author: leek@1fc53939-2000-0410-845c-e8453a809027
File Name: cellprofiler/modules/correctilluminationcalculate.py
Class Name: CorrectIlluminationCalculate
Method Name: apply_scaling