3e44c79a4254da2bf9972dccda44f50517393ad7,unbalanced_dataset/ensemble_sampling.py,BalanceCascade,resample,#BalanceCascade#,132

Before Change



            // Check if we have to make an early stopping
            if self.n_max_subset is not None:
                if self.n_max_subset >= n_subsets:
                    b_subset_search = False
                    if self.verbose:
                        print("The number of subset achieved their maximum")

            // Also check that we will have enough sample to extract at the
            // next round
            if n_elt_maj > np.count_nonzero(b_sel_N):
                b_subset_search = False
                // Select the remaining data
                idx_sel_from_maj = np.nonzero(b_sel_N)[0]

After Change



            // Check if we have to make an early stopping
            if self.n_max_subset is not None:
                if n_subsets == (self.n_max_subset - 1):
                    b_subset_search = False
                    // Select the remaining data
                    idx_sel_from_maj = np.nonzero(b_sel_N)[0]
                    idx_sel_from_maj = np.concatenate((idx_mis_class,
                                                   idx_sel_from_maj),
                                                  axis=0).astype(int)
                    // Select the final batch
                    x_data = np.concatenate((min_x, N_x[idx_sel_from_maj, :]), axis=0)
                    y_data = np.concatenate((min_y, N_y[idx_sel_from_maj]), axis=0)
                    // Push these data into a new subset
                    subsets_x.append(x_data)
                    subsets_y.append(y_data)
                    if self.verbose:
                        print("Creation of the subset //" + str(n_subsets))

                        // We found a new subset, increase the counter
                        n_subsets += 1
                    if self.verbose:
                        print("The number of subset achieved their maximum")

            // Also check that we will have enough sample to extract at the
            // next round
            if n_elt_maj > np.count_nonzero(b_sel_N):
                b_subset_search = False
                // Select the remaining data
                idx_sel_from_maj = np.nonzero(b_sel_N)[0]
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 8

Instances


Project Name: scikit-learn-contrib/imbalanced-learn
Commit Name: 3e44c79a4254da2bf9972dccda44f50517393ad7
Time: 2015-06-30
Author: fmfnogueira@gmail.com
File Name: unbalanced_dataset/ensemble_sampling.py
Class Name: BalanceCascade
Method Name: resample


Project Name: geomstats/geomstats
Commit Name: 36bf1cd036d852d10b189727d43fee6ee0b6c66c
Time: 2020-04-02
Author: 62605255+pchauchat@users.noreply.github.com
File Name: geomstats/geometry/special_euclidean.py
Class Name: SpecialEuclidean
Method Name: random_uniform


Project Name: nilearn/nilearn
Commit Name: 5f179bb7fa08c1ba2863f5733238158b4015a08b
Time: 2019-04-18
Author: ju.huntenburg@gmail.com
File Name: nilearn/surface/surface.py
Class Name:
Method Name: load_surf_data