ca907342507c1139696f542de0a3351d7a382eee,reinforcement_learning/reinforce.py,,,#,77
Before Change
state = env.reset()
for t in range(10000): // Don"t infinite loop while learning
action = select_action(state)
state , reward, done , _ = env.step(action)
if args.render:
env.render()
policy.rewards.append(reward)
After Change
break
if __name__ == "__main__":
main()
In pattern: SUPERPATTERN
Frequency: 4
Non-data size: 8
Instances Project Name: pytorch/examples
Commit Name: ca907342507c1139696f542de0a3351d7a382eee
Time: 2017-12-04
Author: sgross@fb.com
File Name: reinforcement_learning/reinforce.py
Class Name:
Method Name:
Project Name: ray-project/ray
Commit Name: fcdf410ae1bb5071e7d92174eace7d79be2d4ef9
Time: 2020-07-11
Author: sven@anyscale.io
File Name: rllib/agents/dqn/tests/test_dqn.py
Class Name:
Method Name:
Project Name: pytorch/examples
Commit Name: ca907342507c1139696f542de0a3351d7a382eee
Time: 2017-12-04
Author: sgross@fb.com
File Name: reinforcement_learning/actor_critic.py
Class Name:
Method Name:
Project Name: DenisTome/Lifting-from-the-Deep-release
Commit Name: 70f229dde624412adb0bc466b4eee4929fcc1d91
Time: 2017-07-13
Author: dario.turchi@ocado.com
File Name: demo.py
Class Name:
Method Name: