7a82079d10379287ba4e6e42e21b5b3ce8f541bc,spotlight/factorization/implicit.py,ImplicitFactorizationModel,fit,#ImplicitFactorizationModel#Any#Any#,102
Before Change
user_var
)
else:
negative_items = sample_items(
self._num_items,
len(batch_user),
random_state=self._random_state)
negative_var = Variable(
gpu(torch.from_numpy(negative_items))
)
negative_prediction = self._net(user_var, negative_var)
self._optimizer.zero_grad()
loss = loss_fnc(positive_prediction, negative_prediction)
After Change
loss_fnc = pointwise_loss
elif self._loss == "bpr":
loss_fnc = bpr_loss
elif self._loss == "hinge":
loss_fnc = hinge_loss
else:
loss_fnc = adaptive_hinge_loss
for epoch_num in range(self._n_iter):
users, items = shuffle(user_ids,
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 9
Instances
Project Name: maciejkula/spotlight
Commit Name: 7a82079d10379287ba4e6e42e21b5b3ce8f541bc
Time: 2017-07-13
Author: maciej.kula@gmail.com
File Name: spotlight/factorization/implicit.py
Class Name: ImplicitFactorizationModel
Method Name: fit
Project Name: maciejkula/spotlight
Commit Name: 7a82079d10379287ba4e6e42e21b5b3ce8f541bc
Time: 2017-07-13
Author: maciej.kula@gmail.com
File Name: spotlight/sequence/implicit.py
Class Name: ImplicitSequenceModel
Method Name: fit
Project Name: maciejkula/spotlight
Commit Name: 70e4d7fe60a9658bb27b9f5fb67592a1222b2ec3
Time: 2017-07-06
Author: maciej.kula@gmail.com
File Name: spotlight/sequence/implicit.py
Class Name: ImplicitSequenceModel
Method Name: fit