filename_queue = tf.train.string_input_producer(filenames)
// Read examples from files in the filename queue.
read_input = read_cifar10(filename_queue)reshaped_image = tf.cast(read_input.uint8image, tf.float32)
height = IMAGE_SIZE
width = IMAGE_SIZE
// Image processing for training the network. Note the many random
// distortions applied to the image.
// Randomly crop a [height, width] section of the image.
distorted_image = tf.random_crop(reshaped_image, [height, width, 3])
// Randomly flip the image horizontally.
distorted_image = tf.image.random_flip_left_right(distorted_image)
// Because these operations are not commutative, consider randomizing
// the order their operation.
// NOTE: since per_image_standardization zeros the mean and makes
// the stddev unit, this likely has no effect see tensorflow/.
distorted_image = tf.image.random_brightness(distorted_image,
max_delta=63)
distorted_image = tf.image.random_contrast(distorted_image,
lower=0.2, upper=1.8)
// Subtract off the mean and divide by the variance of the pixels.
float_image = tf.image.per_image_standardization(distorted_image)
// Set the shapes of tensors.
float_image.set_shape([height, width, 3])
read_input.label.set_shape([1])
// Ensure that the random shuffling has good mixing properties.
min_fraction_of_examples_in_queue = 0.4