5570e82943d70be03ea18b34a650590884cca02e,GPy/examples/regression.py,,sparse_GP_regression_2D,#Any#Any#Any#,345

Before Change



    // construct kernel
    rbf =  GPy.kern.rbf(2)
    noise = GPy.kern.white(2)
    kernel = rbf + noise

    // create simple GP Model
    m = GPy.models.SparseGPRegression(X,Y,kernel, num_inducing = num_inducing)

    // contrain all parameters to be positive (but not inducing inputs)
    m.set(".*len",2.)

    m.checkgrad()

    // optimize and plot

After Change


    m = GPy.models.SparseGPRegression(X, Y, kernel=rbf, num_inducing=num_inducing)

    // contrain all parameters to be positive (but not inducing inputs)
    m[".*len"] = 2.

    m.checkgrad()

    // optimize and plot
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 7

Instances


Project Name: SheffieldML/GPy
Commit Name: 5570e82943d70be03ea18b34a650590884cca02e
Time: 2013-08-02
Author: ibinbei@gmail.com
File Name: GPy/examples/regression.py
Class Name:
Method Name: sparse_GP_regression_2D


Project Name: SheffieldML/GPy
Commit Name: d383403c8e62df942d7fc54da8116ff98cc0b35a
Time: 2013-06-04
Author: acq11ra@sheffield.ac.uk
File Name: GPy/examples/classification.py
Class Name:
Method Name: sparse_toy_linear_1d_classification


Project Name: SheffieldML/GPy
Commit Name: d383403c8e62df942d7fc54da8116ff98cc0b35a
Time: 2013-06-04
Author: acq11ra@sheffield.ac.uk
File Name: GPy/examples/classification.py
Class Name:
Method Name: sparse_crescent_data