056338255ea968d28ab462295b308cf475adcdde,chainer_/models/dpn.py,DPN,__init__,#DPN#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#,358
Before Change
self.features.add(stage)
self.features.add(DPNFinalBlock(channels=in_channels))
self.output = nn.HybridSequential(prefix="")
if for_training or not test_time_pool:
self.output.add(nn.GlobalAvgPool2D())
self.output.add(conv1x1(
in_channels=in_channels,
out_channels=classes,
use_bias=True))
self.output.add(nn.Flatten())
else:
self.output.add(nn.AvgPool2D(
pool_size=7,
strides=1))
self.output.add(conv1x1(
in_channels=in_channels,
out_channels=classes,
use_bias=True))
self.output.add(GlobalAvgMaxPool2D())
self.output.add(nn.Flatten())
def hybrid_forward(self, F, x):
x = self.features(x)
x = self.output(x)
After Change
for j, out_channels in enumerate(channels_per_stage):
has_proj = (j == 0)
key_strides = 2 if (j == 0) and (i != 0) else 1
setattr(stage, "unit{}".format(j + 1), DPNUnit(
in_channels=in_channels,
mid_channels=r,
bw=bw,
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 7
Instances
Project Name: osmr/imgclsmob
Commit Name: 056338255ea968d28ab462295b308cf475adcdde
Time: 2018-09-05
Author: osemery@gmail.com
File Name: chainer_/models/dpn.py
Class Name: DPN
Method Name: __init__
Project Name: osmr/imgclsmob
Commit Name: 056338255ea968d28ab462295b308cf475adcdde
Time: 2018-09-05
Author: osemery@gmail.com
File Name: chainer_/models/dpn.py
Class Name: DPN
Method Name: __init__
Project Name: osmr/imgclsmob
Commit Name: 340094b32576bf6dce50dbfdf82df14a5f6c043e
Time: 2019-06-10
Author: osemery@gmail.com
File Name: gluon/gluoncv2/models/efficientnet.py
Class Name: EfficientNet
Method Name: __init__
Project Name: osmr/imgclsmob
Commit Name: 14303300e332c3be5d669789f3aa736befa22575
Time: 2020-10-19
Author: osemery@gmail.com
File Name: gluon/gluoncv2/models/resnesta.py
Class Name: ResNeStA
Method Name: __init__