8a6ecfdb1759ad2f67492a983ec5f90b5c5dd3ae,brainiak/reprsimil/brsa.py,GBRSA,_set_SNR_grids,#GBRSA#,4087
Before Change
SNR_weights[0] = SNR_weights[0] / 2.0
SNR_weights[-1] = SNR_weights[-1] / 2.0
elif self.SNR_prior == "lognorm":
log_SNR_grids = ((np.arange(self.SNR_bins)
- (self.SNR_bins - 1) / 2)) \
/ self.SNR_bins * self.logS_range * 6
SNR_grids = np.exp(log_SNR_grids)
log_SNR_grids_upper = log_SNR_grids + self.logS_range * 3 \
/ self.SNR_bins
SNR_weights = np.empty(self.SNR_bins)
SNR_weights[1:-1] = np.diff(
scipy.stats.norm.cdf(log_SNR_grids_upper[:-1],
scale=self.logS_range))
SNR_weights[0] = scipy.stats.norm.cdf(log_SNR_grids_upper[0],
scale=self.logS_range)
SNR_weights[-1] = 1 - scipy.stats.norm.cdf(log_SNR_grids_upper[-2],
scale=self.logS_range)
SNR_grids[0] = 0
else: // SNR_prior == "exp"
SNR_grids = self._bin_exp(self.SNR_bins)
SNR_weights = np.ones(self.SNR_bins) / self.SNR_bins
After Change
lb=bounds[i], ub=bounds[i + 1]) * self.SNR_bins
// Center of mass of each segment between consecutive
// bounds are set as the grids for SNR.
SNR_weights = np.ones(self.SNR_bins) / self.SNR_bins
else: // SNR_prior == "exp"
SNR_grids = self._bin_exp(self.SNR_bins)
SNR_weights = np.ones(self.SNR_bins) / self.SNR_bins
SNR_weights = SNR_weights / np.sum(SNR_weights)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 9
Instances Project Name: brainiak/brainiak
Commit Name: 8a6ecfdb1759ad2f67492a983ec5f90b5c5dd3ae
Time: 2017-08-30
Author: lcnature@users.noreply.github.com
File Name: brainiak/reprsimil/brsa.py
Class Name: GBRSA
Method Name: _set_SNR_grids
Project Name: rusty1s/pytorch_geometric
Commit Name: d8a075668b6e9cdf4c08f6c7285e5c7d2fbf5332
Time: 2017-10-17
Author: matthias.fey@tu-dortmund.de
File Name: torch_geometric/graph/geometry.py
Class Name:
Method Name: edges_from_faces
Project Name: freelunchtheorem/Conditional_Density_Estimation
Commit Name: 4f9f28da19466e18165feb5a3dab0e82f686b926
Time: 2019-01-13
Author: jonas.rothfuss@gmx.de
File Name: tests/unittests_estimators.py
Class Name: TestConditionalDensityEstimators_2d_gaussian
Method Name: test_LSCD_with_2d_gaussian