d6c1b86594ef9a97e9f503547ab6567f89508486,tests/integration_tests/test_experiment.py,,test_experiment_multi_input_intent_classification,#Any#,112
Before Change
csv_filename
)
for encoder1, encoder2 in zip(ENCODERS, ENCODERS):
input_features = input_features_string.substitute(encoder1=encoder1,
encoder2=encoder2)
run_experiment(input_features, output_features_string, rel_path)
def test_experiment_multiple_seq_seq(csv_filename):
// Multiple inputs, Multiple outputs
input_features = "[{type: text, name: random_text, vocab_size: 100," \
" max_len: 10, encoder: stacked_cnn}, {type: numerical," \
After Change
def test_experiment_multi_input_intent_classification(csv_filename):
// Multiple inputs, Single category output
input_features = [
text_feature(vocab_size=10, min_len=1, representation="sparse"),
categorical_feature(
vocab_size=10,
loss="sampled_softmax_cross_entropy"
)
]
output_features = [categorical_feature(vocab_size=2, reduce_input="sum")]
// Generate test data
rel_path = generate_data(input_features, output_features, csv_filename)
for encoder in ENCODERS:
input_features[0]["encoder"] = encoder
run_experiment(input_features, output_features, data_csv=rel_path)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 7
Instances
Project Name: uber/ludwig
Commit Name: d6c1b86594ef9a97e9f503547ab6567f89508486
Time: 2019-05-01
Author: smiryala@uber.com
File Name: tests/integration_tests/test_experiment.py
Class Name:
Method Name: test_experiment_multi_input_intent_classification
Project Name: uber/ludwig
Commit Name: d6c1b86594ef9a97e9f503547ab6567f89508486
Time: 2019-05-01
Author: smiryala@uber.com
File Name: tests/integration_tests/test_experiment.py
Class Name:
Method Name: test_experiment_image_inputs
Project Name: uber/ludwig
Commit Name: d6c1b86594ef9a97e9f503547ab6567f89508486
Time: 2019-05-01
Author: smiryala@uber.com
File Name: tests/integration_tests/test_experiment.py
Class Name:
Method Name: test_image_resizing_num_channel_handling