685126644ae540be72eb662527269a0395e2c9eb,onmt/IO.py,,make_features,#Any#Any#,59
Before Change
def make_features(batch, fields):
// TODO: This is bit hacky, add to batch somehow.
f = ONMTDataset.collect_features(fields)
cat = [batch.src[0]] + [batch.__dict__[k] for k in f]
cat = [c.unsqueeze(2) for c in cat]
return torch.cat(cat, 2)
def join_dicts(*args):
After Change
else:
data = batch.__dict__[side]
feat_start = side + "_feat_"
features = sorted(batch.__dict__[k]
for k in batch.__dict__ if feat_start in k)
levels = [data] + features
return torch.cat([level.unsqueeze(2) for level in levels], 2)
def join_dicts(*args):
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 12
Instances
Project Name: OpenNMT/OpenNMT-py
Commit Name: 685126644ae540be72eb662527269a0395e2c9eb
Time: 2017-09-05
Author: bpeters@coli.uni-saarland.de
File Name: onmt/IO.py
Class Name:
Method Name: make_features
Project Name: scikit-multiflow/scikit-multiflow
Commit Name: 25723006dbd088a24215b23242e55d06e12afd8e
Time: 2019-04-14
Author: andrecruz97@gmail.com
File Name: src/skmultiflow/meta/additive_expert_ensemble.py
Class Name: AdditiveExpertEnsemble
Method Name: predict
Project Name: scikit-multiflow/scikit-multiflow
Commit Name: 7e0e9b744c1c307d3e42f8feae764ee090fad1ce
Time: 2019-04-08
Author: andrecruz97@gmail.com
File Name: src/skmultiflow/meta/dynamic_weighted_majority.py
Class Name: DynamicWeightedMajority
Method Name: predict