3972b4bd9a11a86d7d5fcb2dbb1b81a81eba5e37,GPy/kern/_src/linear.py,Linear,update_gradients_full,#Linear#Any#Any#Any#,76
Before Change
if X2 is None:
self.variances.gradient = np.array([np.sum(dL_dK * tdot(X[:, i:i + 1])) for i in range(self.input_dim)])
else:
product = X[:, None, :] * X2[None, :, :]
self.variances.gradient = (dL_dK[:, :, None] * product).sum(0).sum(0)
else:
self.variances.gradient = np.sum(self._dot_product(X, X2) * dL_dK)
After Change
if self.ARD:
if X2 is None:
//self.variances.gradient = np.array([np.sum(dL_dK * tdot(X[:, i:i + 1])) for i in range(self.input_dim)])
self.variances.gradient = np.einsum("ij,iq,jq->q", dL_dK, X, X)
else:
//product = X[:, None, :] * X2[None, :, :]
//self.variances.gradient = (dL_dK[:, :, None] * product).sum(0).sum(0)
self.variances.gradient = np.einsum("ij,iq,jq->q", dL_dK, X, X2)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 6
Instances
Project Name: SheffieldML/GPy
Commit Name: 3972b4bd9a11a86d7d5fcb2dbb1b81a81eba5e37
Time: 2014-08-19
Author: ibinbei@gmail.com
File Name: GPy/kern/_src/linear.py
Class Name: Linear
Method Name: update_gradients_full
Project Name: SheffieldML/GPy
Commit Name: 0b75aa8b0ff30b3b9945af1d9f6cf51adc4c1d5f
Time: 2014-06-16
Author: z.dai@shef.ac.uk
File Name: GPy/kern/_src/linear.py
Class Name: Linear
Method Name: gradients_X
Project Name: scikit-learn-contrib/DESlib
Commit Name: 1dd461e6ac2bf55760751fa4e158a4113344b278
Time: 2018-07-20
Author: rafaelmenelau@gmail.com
File Name: deslib/des/probabilistic.py
Class Name: Probabilistic
Method Name: estimate_competence