f255b7f90185f4bb38f23ad2499361443177fdd6,test/test_models.py,TestModel,encoder_forward,#TestModel#Any#Any#Any#,67
 
Before Change
        """
        vocab = self.get_vocab()
        feats_padding_idx = []
        embeddings = make_embeddings(opt, vocab.stoi[onmt.IO.PAD_WORD],
                                     feats_padding_idx, len(vocab),
                                     for_encoder=True)
        enc = make_encoder(opt, embeddings)
        test_src, test_tgt, test_length = self.get_batch(sourceL=sourceL,
                                                         bsize=bsize)
After Change
            sourceL: Length of generated input sentence
            bsize: Batchsize of generated input
        """
        word_dict = self.get_vocab()
        feature_dicts = []
        embeddings = make_embeddings(opt, word_dict, feature_dicts)
        enc = make_encoder(opt, embeddings)
        test_src, test_tgt, test_length = self.get_batch(sourceL=sourceL,
                                                         bsize=bsize)

In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 10
Instances
 Project Name: OpenNMT/OpenNMT-py
 Commit Name: f255b7f90185f4bb38f23ad2499361443177fdd6
 Time: 2017-09-12
 Author: nasa4836@gmail.com
 File Name: test/test_models.py
 Class Name: TestModel
 Method Name: encoder_forward
 Project Name: OpenNMT/OpenNMT-py
 Commit Name: f255b7f90185f4bb38f23ad2499361443177fdd6
 Time: 2017-09-12
 Author: nasa4836@gmail.com
 File Name: tools/extract_embeddings.py
 Class Name: 
 Method Name: main
 Project Name: OpenNMT/OpenNMT-py
 Commit Name: f255b7f90185f4bb38f23ad2499361443177fdd6
 Time: 2017-09-12
 Author: nasa4836@gmail.com
 File Name: test/test_models.py
 Class Name: TestModel
 Method Name: embeddings_forward