ade52a2d1afe22bdff0ac28b65e5b5cfdd03dd44,pynets/utils.py,,collect_pandas_df,#Any#Any#Any#Any#Any#Any#,816

Before Change


    warnings.filterwarnings("ignore")
    from pynets.utils import collect_pandas_df_make, flatten

    func_models = ["corr", "sps", "cov", "partcorr", "QuicGraphicalLasso", "QuicGraphicalLassoCV",
                   "QuicGraphicalLassoEBIC", "AdaptiveQuicGraphicalLasso"]

    struct_models = ["csa", "tensor", "csd"]

    net_pickle_mt_list = list(flatten(net_pickle_mt_list))

After Change


    from pynets.utils import collect_pandas_df_make, flatten

    // Available functional and structural connectivity models
    with open("%s%s" % (str(Path(__file__).parent), "/runconfig.yaml"), "r") as stream:
        hardcoded_params = yaml.load(stream)
        try:
            func_models = hardcoded_params["available_models"]["func_models"]
        except KeyError:
            print("ERROR: available functional models not sucessfully extracted from runconfig.yaml")
        try:
            struct_models = hardcoded_params["available_models"]["struct_models"]
        except KeyError:
            print("ERROR: available structural models not sucessfully extracted from runconfig.yaml")
    net_pickle_mt_list = list(flatten(net_pickle_mt_list))

    if multi_nets is not None:
        net_pickle_mt_list_nets = net_pickle_mt_list
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 8

Instances


Project Name: dPys/PyNets
Commit Name: ade52a2d1afe22bdff0ac28b65e5b5cfdd03dd44
Time: 2019-07-02
Author: dpisner@utexas.edu
File Name: pynets/utils.py
Class Name:
Method Name: collect_pandas_df


Project Name: ijmarshall/robotreviewer
Commit Name: ff45642295b7878815bced1d4ed76e79fe90d2f0
Time: 2020-04-27
Author: mail@ijmarshall.com
File Name: robotreviewer/robots/bias_ab_robot.py
Class Name: BiasAbRobot
Method Name: __init__


Project Name: dPys/PyNets
Commit Name: ade52a2d1afe22bdff0ac28b65e5b5cfdd03dd44
Time: 2019-07-02
Author: dpisner@utexas.edu
File Name: pynets/utils.py
Class Name:
Method Name: build_omnetome