1f85614aa3601a75f2ba8e5a039bf6a62e64b49c,umap/umap_.py,,nearest_neighbors,#Any#Any#Any#Any#Any#Any#Any#,149

Before Change


        The distances to the ``n_neighbors`` closest points in the dataset.
    
    if verbose:
        print(time.ctime(time.time()) + " Finding Nearest Neighbors")

    if metric == "precomputed":
        // Note that this does not support sparse distance matrices yet ...
        // Compute indices of n nearest neighbors
        knn_indices = np.argsort(X)[:, :n_neighbors]
        // Compute the nearest neighbor distances
        //   (equivalent to np.sort(X)[:,:n_neighbors])
        knn_dists = X[np.arange(X.shape[0])[:, None], knn_indices].copy()

        rp_forest = []
    else:
        if callable(metric):
            distance_func = metric
        elif metric in dist.named_distances:
            distance_func = dist.named_distances[metric]
        else:
            raise ValueError("Metric is neither callable, " + "nor a recognised string")

        if metric in ("cosine", "correlation", "dice", "jaccard"):
            angular = True

        rng_state = random_state.randint(INT32_MIN, INT32_MAX, 3).astype(np.int64)

        if scipy.sparse.isspmatrix_csr(X):
            if metric in sparse.sparse_named_distances:
                distance_func = sparse.sparse_named_distances[metric]
                if metric in sparse.sparse_need_n_features:
                    metric_kwds["n_features"] = X.shape[1]
            else:
                raise ValueError(
                    "Metric {} not supported for sparse " + "data".format(metric)
                )
            metric_nn_descent = sparse.make_sparse_nn_descent(
                distance_func, tuple(metric_kwds.values())
            )

            // TODO: Hacked values for now
            n_trees = 5 + int(round((X.shape[0]) ** 0.5 / 20.0))
            n_iters = max(5, int(round(np.log2(X.shape[0]))))

            rp_forest = make_forest(X, n_neighbors, n_trees, rng_state, angular)
            leaf_array = rptree_leaf_array(rp_forest)
            knn_indices, knn_dists = metric_nn_descent(
                X.indices,
                X.indptr,
                X.data,
                X.shape[0],
                n_neighbors,
                rng_state,
                max_candidates=60,
                rp_tree_init=True,
                leaf_array=leaf_array,
                n_iters=n_iters,
                verbose=verbose,
            )
        else:
            metric_nn_descent = make_nn_descent(
                distance_func, tuple(metric_kwds.values())
            )
            // TODO: Hacked values for now
            n_trees = 5 + int(round((X.shape[0]) ** 0.5 / 20.0))
            n_iters = max(5, int(round(np.log2(X.shape[0]))))

            rp_forest = make_forest(X, n_neighbors, n_trees, rng_state, angular)
            leaf_array = rptree_leaf_array(rp_forest)
            knn_indices, knn_dists = metric_nn_descent(
                X,
                n_neighbors,
                rng_state,
                max_candidates=60,
                rp_tree_init=True,
                leaf_array=leaf_array,
                n_iters=n_iters,
                verbose=verbose,
            )

        if np.any(knn_indices < 0):
            warn(
                "Failed to correctly find n_neighbors for some samples."
                "Results may be less than ideal. Try re-running with"
                "different parameters."
            )
    if verbose:
        print(time.ctime(time.time()) + " Finished Nearest Neighbor Search")
    return knn_indices, knn_dists, rp_forest

After Change


            // TODO: Hacked values for now
            n_trees = 5 + int(round((X.shape[0]) ** 0.5 / 20.0))
            n_iters = max(5, int(round(np.log2(X.shape[0]))))
            if verbose:
                print(ts() + "Building RP forest with " + str(n_trees) + " trees")

            rp_forest = make_forest(X, n_neighbors, n_trees, rng_state, angular)
            leaf_array = rptree_leaf_array(rp_forest)

            if verbose:
                print(ts() + "Commencing NN descent for " + str(n_iters) + " iterations")
            knn_indices, knn_dists = metric_nn_descent(
                X.indices,
                X.indptr,
                X.data,
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 9

Instances


Project Name: lmcinnes/umap
Commit Name: 1f85614aa3601a75f2ba8e5a039bf6a62e64b49c
Time: 2019-04-19
Author: jlmelville@gmail.com
File Name: umap/umap_.py
Class Name:
Method Name: nearest_neighbors


Project Name: lmcinnes/umap
Commit Name: 1f85614aa3601a75f2ba8e5a039bf6a62e64b49c
Time: 2019-04-19
Author: jlmelville@gmail.com
File Name: umap/umap_.py
Class Name:
Method Name: nearest_neighbors


Project Name: AxeldeRomblay/MLBox
Commit Name: 8768184ae39b420292acc25eda9ae43c3af0752d
Time: 2017-06-20
Author: axelderomblay@gmail.com
File Name: python-package/mlbox/model/supervised/regression/stacking_regressor.py
Class Name: StackingRegressor
Method Name: fit_transform


Project Name: lmcinnes/umap
Commit Name: 40966e92729881bbfb107aad5b5f0dd6ae571e0d
Time: 2019-04-19
Author: jlmelville@gmail.com
File Name: umap/umap_.py
Class Name:
Method Name: nearest_neighbors