eaff287af9039f2ba1bbf86182a0457799de4033,deepchem/models/tensorgraph/layers.py,LSTMStep,create_tensor,#LSTMStep#Any#Any#,2796

Before Change


      self.variables = [self.W, self.U, self.b]
      self._built = True
    if not tfe.in_eager_mode():
      self._create_variables()
      self.trainable_weights = [self.W, self.U, self.b]
    inputs = self._get_input_tensors(in_layers)
    x, h_tm1, c_tm1 = inputs

    // Taken from Keras code [citation needed]
    z = model_ops.dot(x, self.W) + model_ops.dot(h_tm1, self.U) + self.b

    z0 = z[:, :self.output_dim]
    z1 = z[:, self.output_dim:2 * self.output_dim]
    z2 = z[:, 2 * self.output_dim:3 * self.output_dim]
    z3 = z[:, 3 * self.output_dim:]

    i = inner_activation(z0)
    f = inner_activation(z1)
    c = f * c_tm1 + i * activation(z2)
    o = inner_activation(z3)

    h = o * activation(c)

    if set_tensors:
      self.h = h
      self.c = c
      self.out_tensor = h
    return h, [h, c]


def _cosine_dist(x, y):

After Change


        dtype=tf.float32)
    return [W, U, b]

  def create_tensor(self, in_layers=None, set_tensors=True, **kwargs):
    Execute this layer on input tensors.

    Parameters
    ----------
    in_layers: list
      List of three tensors (x, h_tm1, c_tm1). h_tm1 means "h, t-1".

    Returns
    -------
    list
      Returns h, [h + c]
    
    activation = self.activation
    inner_activation = self.inner_activation

    if tfe.in_eager_mode():
      if not self._built:
        self.variables = self._create_variables()
        self._built = True
      W, U, b = self.variables
    else:
      W, U, b = self._create_variables()
    inputs = self._get_input_tensors(in_layers)
    x, h_tm1, c_tm1 = inputs

    // Taken from Keras code [citation needed]
    z = model_ops.dot(x, W) + model_ops.dot(h_tm1, U) + b

    z0 = z[:, :self.output_dim]
    z1 = z[:, self.output_dim:2 * self.output_dim]
    z2 = z[:, 2 * self.output_dim:3 * self.output_dim]
    z3 = z[:, 3 * self.output_dim:]

    i = inner_activation(z0)
    f = inner_activation(z1)
    c = f * c_tm1 + i * activation(z2)
    o = inner_activation(z3)

    h = o * activation(c)

    if set_tensors:
      self.out_tensor = h
    return h, [h, c]


def _cosine_dist(x, y):
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 12

Instances


Project Name: deepchem/deepchem
Commit Name: eaff287af9039f2ba1bbf86182a0457799de4033
Time: 2018-03-27
Author: peastman@stanford.edu
File Name: deepchem/models/tensorgraph/layers.py
Class Name: LSTMStep
Method Name: create_tensor


Project Name: deepchem/deepchem
Commit Name: eaff287af9039f2ba1bbf86182a0457799de4033
Time: 2018-03-27
Author: peastman@stanford.edu
File Name: deepchem/models/tensorgraph/layers.py
Class Name: GraphConv
Method Name: create_tensor


Project Name: deepchem/deepchem
Commit Name: eaff287af9039f2ba1bbf86182a0457799de4033
Time: 2018-03-27
Author: peastman@stanford.edu
File Name: deepchem/models/tensorgraph/layers.py
Class Name: LSTMStep
Method Name: create_tensor


Project Name: deepchem/deepchem
Commit Name: eaff287af9039f2ba1bbf86182a0457799de4033
Time: 2018-03-27
Author: peastman@stanford.edu
File Name: deepchem/models/tensorgraph/layers.py
Class Name: AttnLSTMEmbedding
Method Name: create_tensor