3697053ea6eabb77909d9b43044d784098b48bb9,torch_geometric/nn/models/metapath2vec.py,MetaPath2Vec,__positive_sampling__,#MetaPath2Vec#Any#,72

Before Change


        return emb if subset is None else emb[subset]

    def __positive_sampling__(self, subset):
        raise NotImplementedError

    def __negative_sampling__(self, subset):
        subsets = []
        for keys in self.metapath:

After Change


        return emb if subset is None else emb[subset]

    def __positive_sampling__(self, subset):
        device = self.embedding.weight.device

        subsets = []
        for keys in self.metapath:
            adj = self.adj_dict[keys]
            subset = adj.sample(num_neighbors=1, subset=subset).squeeze()
            subsets.append(subset)
        out = torch.stack(subsets, dim=-1).to(device)
        out.add_(self.offset[1:].view(1, -1))
        return out

    def __negative_sampling__(self, subset):
        device = self.embedding.weight.device
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 12

Instances


Project Name: rusty1s/pytorch_geometric
Commit Name: 3697053ea6eabb77909d9b43044d784098b48bb9
Time: 2020-05-18
Author: matthias.fey@tu-dortmund.de
File Name: torch_geometric/nn/models/metapath2vec.py
Class Name: MetaPath2Vec
Method Name: __positive_sampling__


Project Name: stanfordnlp/stanza
Commit Name: 1f3006445eb4570231e1591c6021ea7091c9c8d7
Time: 2018-08-28
Author: qipeng@users.noreply.github.com
File Name: models/common/vocab.py
Class Name: CompositeVocab
Method Name: id2unit


Project Name: rusty1s/pytorch_geometric
Commit Name: 6b9ccdbadbca088c0e6b5be1d08848cad0718bbc
Time: 2020-05-31
Author: matthias.fey@tu-dortmund.de
File Name: torch_geometric/nn/models/metapath2vec.py
Class Name: MetaPath2Vec
Method Name: __positive_sampling__


Project Name: rusty1s/pytorch_geometric
Commit Name: 3697053ea6eabb77909d9b43044d784098b48bb9
Time: 2020-05-18
Author: matthias.fey@tu-dortmund.de
File Name: torch_geometric/nn/models/metapath2vec.py
Class Name: MetaPath2Vec
Method Name: __positive_sampling__