b45f35862afbca09ff1c70be1cc4d1d6ca6c9617,pyriemann/classification.py,MDM,_predict_distances,#MDM#Any#,46
Before Change
dist = numpy.empty((Nt, Nc))
for m in range(Nc):
for k in range(Nt):
dist[k, m] = distance(covtest[k, :, :], self.covmeans[m],
metric=self.metric_dist)
return dist
def predict(self, covtest):
dist = self._predict_distances(covtest)
After Change
if self.n_jobs == 1:
dist = [distance(covtest, self.covmeans[m], self.metric_dist)
for m in range(Nc)]
else:
dist = Parallel(n_jobs=self.n_jobs)(delayed(distance)(covtest, self.covmeans[m], self.metric_dist) for m in range(Nc))
dist = numpy.concatenate(dist, axis=1)
return dist
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 12
Instances
Project Name: alexandrebarachant/pyRiemann
Commit Name: b45f35862afbca09ff1c70be1cc4d1d6ca6c9617
Time: 2015-07-03
Author: alexandre.barachant@gmail.com
File Name: pyriemann/classification.py
Class Name: MDM
Method Name: _predict_distances
Project Name: freelunchtheorem/Conditional_Density_Estimation
Commit Name: 4677f1eb215c93a651b4bb5c491b2c20b9efb8b2
Time: 2018-01-18
Author: f4bio.ferreira@gmail.com
File Name: evaluation/GoodnessOfFit.py
Class Name: GoodnessOfFit
Method Name: kolmogorov_smirnov_cdf
Project Name: alexandrebarachant/pyRiemann
Commit Name: b45f35862afbca09ff1c70be1cc4d1d6ca6c9617
Time: 2015-07-03
Author: alexandre.barachant@gmail.com
File Name: pyriemann/classification.py
Class Name: MDM
Method Name: _predict_distances
Project Name: freelunchtheorem/Conditional_Density_Estimation
Commit Name: 4677f1eb215c93a651b4bb5c491b2c20b9efb8b2
Time: 2018-01-18
Author: f4bio.ferreira@gmail.com
File Name: evaluation/GoodnessOfFit.py
Class Name: GoodnessOfFit
Method Name: kolmogorov_smirnov_2sample