for feat in sparse_features] + [DenseFeat(feat, 1, )
for feat in dense_features]
linear_feature_columns = fixlen_feature_columns
dnn_feature_columns = fixlen_feature_columns
fixlen_feature_names = get_fixlen_feature_names(linear_feature_columns + dnn_feature_columns, )
// 3.generate input data for model
train, test = train_test_split(data, test_size=0.2)
train_model_input = [train[name] for name in fixlen_feature_names]
test_model_input = [test[name] for name in fixlen_feature_names]
// 4.Define Model,train,predict and evaluate
model = DeepFM(linear_feature_columns,dnn_feature_columns, task="binary")