b1de080823e41b921bec2949db2b6c3cb1f1d5ef,examples/plot_lda.py,,,#,43
Before Change
y = data["y"]
// create a pipeline for LDA transformation of the feature representation
feed = Pipeline([("segment", Segment()),
("features", SegFeatures(features = base_features()))])
est = LinearDiscriminantAnalysis(n_components=2)
pipe = SegPipe(feed, est)
pipe.fit(X,y)
Xtr, ytr = pipe.transform(X, y)
After Change
y = data["y"]
// create a pipeline for LDA transformation of the feature representation
est = Pipeline([ ("ftr", sgl.FeatureRep()),
("lda", LinearDiscriminantAnalysis(n_components=2))])
pipe = sgl.SegPipe(est)
X2, y2 = pipe.fit_transform(X, y)
plot_embedding(X2, y2.astype(int), data["y_labels"])
plt.show()
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 12
Instances
Project Name: dmbee/seglearn
Commit Name: b1de080823e41b921bec2949db2b6c3cb1f1d5ef
Time: 2018-03-11
Author: david.mo.burns@gmail.com
File Name: examples/plot_lda.py
Class Name:
Method Name:
Project Name: dmbee/seglearn
Commit Name: b1de080823e41b921bec2949db2b6c3cb1f1d5ef
Time: 2018-03-11
Author: david.mo.burns@gmail.com
File Name: examples/plot_scoring.py
Class Name:
Method Name:
Project Name: dmbee/seglearn
Commit Name: b1de080823e41b921bec2949db2b6c3cb1f1d5ef
Time: 2018-03-11
Author: david.mo.burns@gmail.com
File Name: examples/plot_model_selection1.py
Class Name:
Method Name: