6bdf6eeaac847d25844dae3390504d402ce095d8,code/gifqa/models/frameqa_models.py,FrameQASpTp,build_graph,#FrameQASpTp#Any#Any#Any#Any#Any#Any#,407
Before Change
self.dropout_keep_prob_output_t = tf.constant(self.dropout_keep_prob_output)
self.dropout_keep_prob_image_embed_t = tf.constant(self.dropout_keep_prob_image_embed)
for idx, device in enumerate(self.devices):
with tf.device("/%s" % device):
if idx > 0:
tf.get_variable_scope().reuse_variables()
from_idx = self.batch_size_per_gpu*idx
video = tf.slice(self.video, [from_idx,0,0,0,0],
[self.batch_size_per_gpu,-1,-1,-1,-1])
video_mask = tf.slice(self.video_mask, [from_idx,0],
[self.batch_size_per_gpu,-1])
caption = tf.slice(self.caption, [from_idx,0],
[self.batch_size_per_gpu,-1])
caption_mask = tf.slice(self.caption_mask, [from_idx,0],
[self.batch_size_per_gpu,-1])
answer = tf.slice(self.answer, [from_idx,0],
[self.batch_size_per_gpu,-1])
self.build_graph_single_gpu(video, video_mask, caption,
caption_mask, answer, idx)
self.mean_loss = tf.reduce_mean(tf.pack(self.mean_loss_list, axis=0))
self.alpha = tf.pack(self.alpha_list, axis=0)
self.predictions = tf.pack(self.predictions_list, axis=0)
self.correct_predictions = tf.pack(self.correct_predictions_list, axis=0)
After Change
self.word_embed_t = tf.get_variable("Word_embed",
[self.vocabulary_size, self.word_dim],
initializer=tf.random_normal_initializer(stddev=0.1))
self.dropout_keep_prob_t = tf.placeholder_with_default(1., [])
with tf.variable_scope(tf.get_variable_scope()) as scope:
for idx, device in enumerate(self.devices):
with tf.device("/%s" % device):
if idx > 0:
tf.get_variable_scope().reuse_variables()
from_idx = self.batch_size_per_gpu*idx
video = tf.slice(self.video, [from_idx,0,0,0,0],
[self.batch_size_per_gpu,-1,-1,-1,-1])
video_mask = tf.slice(self.video_mask, [from_idx,0],
[self.batch_size_per_gpu,-1])
caption = tf.slice(self.caption, [from_idx,0],
[self.batch_size_per_gpu,-1])
caption_mask = tf.slice(self.caption_mask, [from_idx,0],
[self.batch_size_per_gpu,-1])
answer = tf.slice(self.answer, [from_idx,0],
[self.batch_size_per_gpu,-1])
self.build_graph_single_gpu(video, video_mask, caption,
caption_mask, answer, idx)
self.mean_loss = tf.reduce_mean(tf.stack(self.mean_loss_list, axis=0))
self.mean_grad = average_gradients(self.mean_grad_list) // use this to debug.
self.alpha = tf.stack(self.alpha_list, axis=0)
self.predictions = tf.stack(self.predictions_list, axis=0)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 12
Instances
Project Name: YunseokJANG/tgif-qa
Commit Name: 6bdf6eeaac847d25844dae3390504d402ce095d8
Time: 2020-05-21
Author: kimdon20@gmail.com
File Name: code/gifqa/models/frameqa_models.py
Class Name: FrameQASpTp
Method Name: build_graph
Project Name: YunseokJANG/tgif-qa
Commit Name: 6bdf6eeaac847d25844dae3390504d402ce095d8
Time: 2020-05-21
Author: kimdon20@gmail.com
File Name: code/gifqa/models/count_models.py
Class Name: CountSpTp
Method Name: build_graph
Project Name: YunseokJANG/tgif-qa
Commit Name: 6bdf6eeaac847d25844dae3390504d402ce095d8
Time: 2020-05-21
Author: kimdon20@gmail.com
File Name: code/gifqa/models/mc_models.py
Class Name: MCSp
Method Name: build_graph