5f4f3d1aa7f3e5ac7bfd1f950454bcf7ad672f8e,models/AttModel.py,AttModel,_sample_beam,#AttModel#Any#Any#Any#Any#,143

Before Change



        // embed fc and att feats
        fc_feats = self.fc_embed(fc_feats)
        att_feats = pack_wrapper(self.att_embed, att_feats, att_masks)

        // Project the attention feats first to reduce memory and computation comsumptions.
        p_att_feats = self.ctx2att(att_feats)

        assert beam_size <= self.vocab_size + 1, "lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed"
        seq = torch.LongTensor(self.seq_length, batch_size).zero_()
        seqLogprobs = torch.FloatTensor(self.seq_length, batch_size)
        // lets process every image independently for now, for simplicity

        self.done_beams = [[] for _ in range(batch_size)]
        for k in range(batch_size):
            state = self.init_hidden(beam_size)
            tmp_fc_feats = fc_feats[k:k+1].expand(beam_size, fc_feats.size(1))
            tmp_att_feats = att_feats[k:k+1].expand(*((beam_size,)+att_feats.size()[1:])).contiguous()
            tmp_p_att_feats = p_att_feats[k:k+1].expand(*((beam_size,)+p_att_feats.size()[1:])).contiguous()
            tmp_att_masks = att_masks[k:k+1].expand(*((beam_size,)+att_masks.size()[1:])).contiguous() if att_masks is not None else None

            for t in range(1):
                if t == 0: // input <bos>
                    it = fc_feats.data.new(beam_size).long().zero_()
                    xt = self.embed(Variable(it, requires_grad=False))

                output, state = self.core(xt, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, state, tmp_att_masks)
                logprobs = F.log_softmax(self.logit(output))

            self.done_beams[k] = self.beam_search(state, logprobs, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, opt=opt)
            seq[:, k] = self.done_beams[k][0]["seq"] // the first beam has highest cumulative score
            seqLogprobs[:, k] = self.done_beams[k][0]["logps"]

After Change



            for t in range(1):
                if t == 0: // input <bos>
                    it = Variable(fc_feats.data.new(beam_size).long().zero_())

                logprobs, state = self.get_logprobs_state(it, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, state)

            self.done_beams[k] = self.beam_search(state, logprobs, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, opt=opt)
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 4

Non-data size: 13

Instances


Project Name: ruotianluo/ImageCaptioning.pytorch
Commit Name: 5f4f3d1aa7f3e5ac7bfd1f950454bcf7ad672f8e
Time: 2018-04-14
Author: rluo@ttic.edu
File Name: models/AttModel.py
Class Name: AttModel
Method Name: _sample_beam


Project Name: ruotianluo/self-critical.pytorch
Commit Name: 5f4f3d1aa7f3e5ac7bfd1f950454bcf7ad672f8e
Time: 2018-04-14
Author: rluo@ttic.edu
File Name: models/AttModel.py
Class Name: AttModel
Method Name: _sample_beam


Project Name: ruotianluo/ImageCaptioning.pytorch
Commit Name: 5f4f3d1aa7f3e5ac7bfd1f950454bcf7ad672f8e
Time: 2018-04-14
Author: rluo@ttic.edu
File Name: models/AttModel.py
Class Name: AttModel
Method Name: _sample