ca907342507c1139696f542de0a3351d7a382eee,reinforcement_learning/actor_critic.py,,,#,86
Before Change
running_reward = 10
for i_episode in count(1):
state = env.reset()
for t in range(10000): // Don"t infinite loop while learning
action = select_action(state)
state, reward, done, _ = env.step(action)
if args.render:
env.render()
model.rewards.append(reward)
if done:
After Change
break
if __name__ == "__main__":
main()
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 17
Instances
Project Name: pytorch/examples
Commit Name: ca907342507c1139696f542de0a3351d7a382eee
Time: 2017-12-04
Author: sgross@fb.com
File Name: reinforcement_learning/actor_critic.py
Class Name:
Method Name:
Project Name: pytorch/examples
Commit Name: ca907342507c1139696f542de0a3351d7a382eee
Time: 2017-12-04
Author: sgross@fb.com
File Name: reinforcement_learning/reinforce.py
Class Name:
Method Name:
Project Name: pytorch/examples
Commit Name: ca907342507c1139696f542de0a3351d7a382eee
Time: 2017-12-04
Author: sgross@fb.com
File Name: reinforcement_learning/actor_critic.py
Class Name:
Method Name:
Project Name: PacktPublishing/Deep-Reinforcement-Learning-Hands-On
Commit Name: 23a204d75f91c85bb542269447dbfa2164c695ce
Time: 2018-01-19
Author: max.lapan@gmail.com
File Name: ch13/wob_click_train.py
Class Name:
Method Name: