1d1b36f28b5c8fc06eacec6e7a4342987e7da03b,examples/plot_nn_training_curves.py,,,#,50

Before Change


// create a segment learning pipeline
width = 100
est = KerasClassifier(build_fn=crnn_model, epochs = 10, batch_size = 256, verbose = 0, validation_split = 0.2)
pipe = SegPipe(est)

////////////////////////////////////////////////////////////////////////////////////////////
// Accessing training history
////////////////////////////////////////////////////////////////////////////////////////////

// this is a bit of a hack, because history object is returned by the
// keras wrapper when fit is called
// this approach won"t work with a more complex estimator pipeline, in which case
// a callable class with the desired properties should be made passed to build_fn

pipe.fit(X_train,y_train)
print(DataFrame(pipe.history.history))
ac_train = pipe.history.history["acc"]
ac_val = pipe.history.history["val_acc"]
epoch = np.arange(len(ac_train))+1


////////////////////////////////////////////////////////////////////////////////////////////

After Change



// create a segment learning pipeline
width = 100
pipe = Pype([("seg",SegmentX()),
             ("crnn", KerasClassifier(build_fn=crnn_model, epochs = 10, batch_size = 256,
                                      verbose = 0, validation_split = 0.2))])

////////////////////////////////////////////////////////////////////////////////////////////
// Accessing training history
////////////////////////////////////////////////////////////////////////////////////////////

// this is a bit of a hack, because history object is returned by the
// keras wrapper when fit is called
// this approach won"t work with a more complex estimator pipeline, in which case
// a callable class with the desired properties should be made passed to build_fn

pipe.fit(X_train,y_train)
print(DataFrame(pipe.history.history))
ac_train = pipe.history.history["acc"]
ac_val = pipe.history.history["val_acc"]
epoch = np.arange(len(ac_train))+1


////////////////////////////////////////////////////////////////////////////////////////////
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 14

Instances


Project Name: dmbee/seglearn
Commit Name: 1d1b36f28b5c8fc06eacec6e7a4342987e7da03b
Time: 2018-07-27
Author: david.mo.burns@gmail.com
File Name: examples/plot_nn_training_curves.py
Class Name:
Method Name:


Project Name: dmbee/seglearn
Commit Name: 1d1b36f28b5c8fc06eacec6e7a4342987e7da03b
Time: 2018-07-27
Author: david.mo.burns@gmail.com
File Name: examples/plot_scoring.py
Class Name:
Method Name:


Project Name: dmbee/seglearn
Commit Name: 1d1b36f28b5c8fc06eacec6e7a4342987e7da03b
Time: 2018-07-27
Author: david.mo.burns@gmail.com
File Name: examples/plot_model_selection2.py
Class Name:
Method Name: