4ce9a9d078d41af1a960f0e5bf16e373f69d5117,open_seq2seq/encoders/rnn_encoders.py,BidirectionalRNNEncoderWithEmbedding,_encode,#BidirectionalRNNEncoderWithEmbedding#Any#,204
Before Change
dtype=tf.float32
)
cell_params = copy.deepcopy(self.params)
cell_params["num_units"] = self.params["encoder_cell_units"]
if self._mode == "train":
dp_input_keep_prob = self.params["encoder_dp_input_keep_prob"]
dp_output_keep_prob = self.params["encoder_dp_output_keep_prob"]
After Change
dp_output_keep_prob=dp_output_keep_prob,
residual_connections=self.params["encoder_use_skip_connections"]
) for _ in range(self.params["encoder_layers"])]
bwd_cells = [
single_cell(cell_class=self.params["core_cell"],
cell_params=self.params.get("core_cell_params", {}),
dp_input_keep_prob=dp_input_keep_prob,
dp_output_keep_prob=dp_output_keep_prob,
residual_connections=self.params["encoder_use_skip_connections"]
) for _ in range(self.params["encoder_layers"])]
with tf.variable_scope("FW"):
self._encoder_cell_fw = tf.contrib.rnn.MultiRNNCell(fwd_cells)
with tf.variable_scope("BW"):
self._encoder_cell_bw = tf.contrib.rnn.MultiRNNCell(bwd_cells)
embedded_inputs = tf.cast(tf.nn.embedding_lookup(
self.enc_emb_w,
source_sequence,
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 12
Instances
Project Name: NVIDIA/OpenSeq2Seq
Commit Name: 4ce9a9d078d41af1a960f0e5bf16e373f69d5117
Time: 2018-06-13
Author: okuchaiev@nvidia.com
File Name: open_seq2seq/encoders/rnn_encoders.py
Class Name: BidirectionalRNNEncoderWithEmbedding
Method Name: _encode
Project Name: NVIDIA/OpenSeq2Seq
Commit Name: 4ce9a9d078d41af1a960f0e5bf16e373f69d5117
Time: 2018-06-13
Author: okuchaiev@nvidia.com
File Name: open_seq2seq/decoders/rnn_decoders.py
Class Name: RNNDecoderWithAttention
Method Name: _decode
Project Name: NVIDIA/OpenSeq2Seq
Commit Name: 4ce9a9d078d41af1a960f0e5bf16e373f69d5117
Time: 2018-06-13
Author: okuchaiev@nvidia.com
File Name: open_seq2seq/decoders/rnn_decoders.py
Class Name: BeamSearchRNNDecoderWithAttention
Method Name: _decode