8118fe98fb3c10515476ca49fceef2162a9754af,test/test_pipeline/test_classification.py,SimpleClassificationPipelineTest,test_predict_batched_sparse,#SimpleClassificationPipelineTest#,417
Before Change
def test_predict_batched_sparse(self):
cs = SimpleClassificationPipeline.get_hyperparameter_search_space(
dataset_properties={"sparse": True})
config = Configuration(cs,
values={"balancing:strategy": "none",
"classifier:__choice__": "random_forest",
"imputation:strategy": "mean",
"one_hot_encoding:minimum_fraction": 0.01,
"one_hot_encoding:use_minimum_fraction": "True",
"preprocessor:__choice__": "no_preprocessing",
"classifier:random_forest:bootstrap": "True",
"classifier:random_forest:criterion": "gini",
"classifier:random_forest:max_depth": "None",
"classifier:random_forest:min_samples_split": 2,
"classifier:random_forest:min_samples_leaf": 2,
"classifier:random_forest:max_features": 0.5,
"classifier:random_forest:max_leaf_nodes": "None",
"classifier:random_forest:n_estimators": 100,
"classifier:random_forest:min_weight_fraction_leaf": 0.0,
"rescaling:__choice__": "standardize"})
cls = SimpleClassificationPipeline(config)
// Multiclass
X_train, Y_train, X_test, Y_test = get_dataset(dataset="digits",
make_sparse=True)
cls.fit(X_train, Y_train)
X_test_ = X_test.copy()
prediction_ = cls.predict(X_test_)
cls_predict = mock.Mock(wraps=cls.pipeline_)
cls.pipeline_ = cls_predict
prediction = cls.predict(X_test, batch_size=20)
self.assertEqual((1647,), prediction.shape)
After Change
assert_array_almost_equal(prediction_, prediction)
def test_predict_batched_sparse(self):
config = {"balancing:strategy": "none",
"classifier:__choice__": "random_forest",
"imputation:strategy": "mean",
"one_hot_encoding:minimum_fraction": 0.01,
"one_hot_encoding:use_minimum_fraction": "True",
"preprocessor:__choice__": "no_preprocessing",
"classifier:random_forest:bootstrap": "True",
"classifier:random_forest:criterion": "gini",
"classifier:random_forest:max_depth": "None",
"classifier:random_forest:min_samples_split": 2,
"classifier:random_forest:min_samples_leaf": 2,
"classifier:random_forest:max_features": 0.5,
"classifier:random_forest:max_leaf_nodes": "None",
"classifier:random_forest:n_estimators": 100,
"classifier:random_forest:min_weight_fraction_leaf": 0.0,
"rescaling:__choice__": "standardize"}
cls = SimpleClassificationPipeline(config=config,
dataset_properties={"sparse": True})
// Multiclass
X_train, Y_train, X_test, Y_test = get_dataset(dataset="digits",
make_sparse=True)
cls.fit(X_train, Y_train)
X_test_ = X_test.copy()
prediction_ = cls.predict_proba(X_test_)
// The object behind the last step in the pipeline
cls_predict = mock.Mock(wraps=cls.steps[-1][1].predict_proba)
cls.steps[-1][-1].predict_proba = cls_predict
prediction = cls.predict_proba(X_test, batch_size=20)
self.assertEqual((1647, 10), prediction.shape)
self.assertEqual(84, cls_predict.call_count)
assert_array_almost_equal(prediction_, prediction)
// Multilabel
X_train, Y_train, X_test, Y_test = get_dataset(dataset="digits",
make_sparse=True)
Y_train = np.array(list([(list([1 if i != y else 0 for i in range(10)]))
for y in Y_train]))
cls.fit(X_train, Y_train)
X_test_ = X_test.copy()
prediction_ = cls.predict_proba(X_test_)
// The object behind the last step in the pipeline
cls_predict = mock.Mock(wraps=cls.steps[-1][1].predict_proba)
cls.steps[-1][-1].predict_proba = cls_predict
prediction = cls.predict_proba(X_test, batch_size=20)
self.assertEqual((1647, 10), prediction.shape)
In pattern: SUPERPATTERN
Frequency: 4
Non-data size: 15
Instances
Project Name: automl/auto-sklearn
Commit Name: 8118fe98fb3c10515476ca49fceef2162a9754af
Time: 2016-07-13
Author: feurerm@informatik.uni-freiburg.de
File Name: test/test_pipeline/test_classification.py
Class Name: SimpleClassificationPipelineTest
Method Name: test_predict_batched_sparse
Project Name: automl/auto-sklearn
Commit Name: 9a62e98e14c1ad88b29baee3e5ba55cb45ac7aec
Time: 2016-12-31
Author: feurerm@informatik.uni-freiburg.de
File Name: test/test_pipeline/test_classification.py
Class Name: SimpleClassificationPipelineTest
Method Name: test_predict_batched_sparse
Project Name: automl/auto-sklearn
Commit Name: 9a62e98e14c1ad88b29baee3e5ba55cb45ac7aec
Time: 2016-12-31
Author: feurerm@informatik.uni-freiburg.de
File Name: test/test_pipeline/test_classification.py
Class Name: SimpleClassificationPipelineTest
Method Name: test_predict_proba_batched_sparse
Project Name: automl/auto-sklearn
Commit Name: 8118fe98fb3c10515476ca49fceef2162a9754af
Time: 2016-07-13
Author: feurerm@informatik.uni-freiburg.de
File Name: test/test_pipeline/test_classification.py
Class Name: SimpleClassificationPipelineTest
Method Name: test_predict_proba_batched_sparse