38512d92a8682a62e73c5b9e86366888be374532,dragonn/vis/__init__.py,,plot_seq_importance,#Any#Any#Any#Any#Any#Any#Any#Any#,130
Before Change
xlim: restrict the plotted xrange
figsize: matplotlib figure size
if show==False:
plt.ioff()
else:
plt.ion()
grads=grads.squeeze()
x=x.squeeze()
seq_len = x.shape[0]
After Change
xlim: restrict the plotted xrange
figsize: matplotlib figure size
if axes is None:
f,axes=plt.subplots(1,dpi=80,figsize=figsize)
show=True
else:
show=False
grads=grads.squeeze()
x=x.squeeze()
seq_len = x.shape[0]
vals_to_plot=grads*x
if xlim is None:
xlim = (0, seq_len)
if ylim is None:
ylim= (np.amin(vals_to_plot),np.amax(vals_to_plot))
axes=plot_bases_on_ax(vals_to_plot,axes,show_ticks=True)
plt.xticks(list(range(xlim[0], xlim[1], 5)))
plt.xlim(xlim)
plt.ylim(ylim)
plt.title(title)
axes.axvline(x=snp_pos, color="k", linestyle="--")
if show==True:
plt.show()
else:
return axes
def plot_learning_curve(history):
train_losses=history.history["loss"]
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 11
Instances
Project Name: kundajelab/dragonn
Commit Name: 38512d92a8682a62e73c5b9e86366888be374532
Time: 2019-05-29
Author: annashcherbina@gmail.com
File Name: dragonn/vis/__init__.py
Class Name:
Method Name: plot_seq_importance
Project Name: kundajelab/dragonn
Commit Name: 38512d92a8682a62e73c5b9e86366888be374532
Time: 2019-05-29
Author: annashcherbina@gmail.com
File Name: dragonn/vis/__init__.py
Class Name:
Method Name: plot_seq_importance
Project Name: kundajelab/dragonn
Commit Name: 38512d92a8682a62e73c5b9e86366888be374532
Time: 2019-05-29
Author: annashcherbina@gmail.com
File Name: dragonn/vis/__init__.py
Class Name:
Method Name: plot_ism
Project Name: kundajelab/dragonn
Commit Name: 38512d92a8682a62e73c5b9e86366888be374532
Time: 2019-05-29
Author: annashcherbina@gmail.com
File Name: dragonn/vis/__init__.py
Class Name:
Method Name: plot_motif_scores