3f0ac49bf76bf3ee690f6209248e65316fde9999,ParamSklearn/components/regression/random_forest.py,RandomForest,get_hyperparameter_search_space,#Any#,118

Before Change


        max_features = UniformFloatHyperparameter(
            "max_features", 0.5, 5, default=1)
        max_depth = UnParametrizedHyperparameter("max_depth", "None")
        min_samples_split = UniformIntegerHyperparameter(
            name="min_samples_split", lower=2, upper=20, default=2, log=False)
        min_samples_leaf = UniformIntegerHyperparameter(
            name="min_samples_leaf", lower=1, upper=20, default=1, log=False)
        bootstrap = CategoricalHyperparameter(
            name="bootstrap", choices=["True", "False"], default="True")

        cs = ConfigurationSpace()
        cs.add_hyperparameter(n_estimators)
        cs.add_hyperparameter(max_features)
        cs.add_hyperparameter(max_depth)
        cs.add_hyperparameter(min_samples_split)
        cs.add_hyperparameter(min_samples_leaf)
        cs.add_hyperparameter(bootstrap)
        cs.add_hyperparameter(criterion)

        return cs

After Change



    @staticmethod
    def get_hyperparameter_search_space(dataset_properties=None):
        cs = ConfigurationSpace()
        cs.add_hyperparameter(Constant("n_estimators", 100))
        cs.add_hyperparameter(Constant("criterion", "mse"))
        cs.add_hyperparameter(UniformFloatHyperparameter(
            "max_features", 0.5, 5, default=1))
        cs.add_hyperparameter(UnParametrizedHyperparameter("max_depth", "None"))
        cs.add_hyperparameter(UniformIntegerHyperparameter(
            "min_samples_split", 2, 20, default=2))
        cs.add_hyperparameter(UniformIntegerHyperparameter(
            "min_samples_leaf", 1, 20, default=1))
        cs.add_hyperparameter(
            UnParametrizedHyperparameter("min_weight_fraction_leaf", 0.))
        cs.add_hyperparameter(UnParametrizedHyperparameter("max_leaf_nodes", "None"))
        cs.add_hyperparameter(CategoricalHyperparameter(
            "bootstrap", ["True", "False"], default="True"))
        return cs
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 5

Non-data size: 15

Instances


Project Name: automl/auto-sklearn
Commit Name: 3f0ac49bf76bf3ee690f6209248e65316fde9999
Time: 2015-10-01
Author: feurerm@informatik.uni-freiburg.de
File Name: ParamSklearn/components/regression/random_forest.py
Class Name: RandomForest
Method Name: get_hyperparameter_search_space


Project Name: automl/auto-sklearn
Commit Name: 8fd35f58ddb570ce1cf628a48358e4239836cf97
Time: 2015-10-01
Author: feurerm@informatik.uni-freiburg.de
File Name: ParamSklearn/components/preprocessing/extra_trees_preproc_for_classification.py
Class Name: ExtraTreesPreprocessor
Method Name: get_hyperparameter_search_space


Project Name: automl/auto-sklearn
Commit Name: 03cc78a8beb1f3e8b2bd29c9ba5063ba81955336
Time: 2015-10-01
Author: feurerm@informatik.uni-freiburg.de
File Name: ParamSklearn/components/classification/sgd.py
Class Name: SGD
Method Name: get_hyperparameter_search_space


Project Name: automl/auto-sklearn
Commit Name: 9caf652d8aa1fefb8531b5ccc339aceef520c305
Time: 2015-10-01
Author: feurerm@informatik.uni-freiburg.de
File Name: ParamSklearn/components/classification/extra_trees.py
Class Name: ExtraTreesClassifier
Method Name: get_hyperparameter_search_space


Project Name: automl/auto-sklearn
Commit Name: 3f0ac49bf76bf3ee690f6209248e65316fde9999
Time: 2015-10-01
Author: feurerm@informatik.uni-freiburg.de
File Name: ParamSklearn/components/classification/random_forest.py
Class Name: RandomForest
Method Name: get_hyperparameter_search_space