5619b6770675a7fedd85cbc5ab19773a3ba94e13,autokeras/supervised.py,SingleModelSupervised,predict,#SingleModelSupervised#Any#,336
Before Change
model = self.graph.produce_model()
model.eval()
outputs = []
with torch.no_grad():
for index, inputs in enumerate(test_loader):
outputs.append(model(inputs).numpy())
output = reduce(lambda x, y: np.concatenate((x, y)), outputs)
return self.inverse_transform_y(output)
def evaluate(self, x_test, y_test):
Return the accuracy score between predict value and `y_test`.
After Change
model = self.graph.produce_model()
model.eval()
output = Backend.predict(model, test_loader)
return self.inverse_transform_y(output)
def evaluate(self, x_test, y_test):
Return the accuracy score between predict value and `y_test`.
In pattern: SUPERPATTERN
Frequency: 4
Non-data size: 15
Instances Project Name: keras-team/autokeras
Commit Name: 5619b6770675a7fedd85cbc5ab19773a3ba94e13
Time: 2019-03-30
Author: immortalness@gmail.com
File Name: autokeras/supervised.py
Class Name: SingleModelSupervised
Method Name: predict
Project Name: jhfjhfj1/autokeras
Commit Name: 5619b6770675a7fedd85cbc5ab19773a3ba94e13
Time: 2019-03-30
Author: immortalness@gmail.com
File Name: autokeras/net_module.py
Class Name: NetworkModule
Method Name: predict
Project Name: jhfjhfj1/autokeras
Commit Name: 5619b6770675a7fedd85cbc5ab19773a3ba94e13
Time: 2019-03-30
Author: immortalness@gmail.com
File Name: autokeras/supervised.py
Class Name: SingleModelSupervised
Method Name: predict