18857c333e04b6815ec1f2ab9fcec1c0a0ae7bfd,cube/models/vocoder.py,BeeCoder,__init__,#BeeCoder#Any#Any#Any#,25
Before Change
class BeeCoder:
def __init__(self, params, model=None, runtime=False):
self.params = params
self.HIDDEN_SIZE = [448, 448]
self.FFT_SIZE = 513
self.UPSAMPLE_COUNT = int(12.5 * params.target_sample_rate / 1000)
self.sparse = False
if model is None:
self.model = dy.Model()
else:
self.model = model
input_size = self.UPSAMPLE_COUNT + self.params.mgc_order
hidden_w = []
hidden_b = []
for layer_size in self.HIDDEN_SIZE:
hidden_w.append(self.model.add_parameters((layer_size, input_size)))
hidden_b.append(self.model.add_parameters((layer_size)))
input_size = layer_size
// self.networks.append([hidden_w, hidden_b])
self.mlp = [hidden_w, hidden_b]
self.output_w = self.model.add_parameters((2, input_size))
self.output_b = self.model.add_parameters((2))
self.trainer = dy.AdamTrainer(self.model, alpha=params.learning_rate)
After Change
class BeeCoder:
def __init__(self, params, model=None, runtime=False):
self.params = params
self.HIDDEN_SIZE = [1024, 1024]
self.FFT_SIZE = 513
self.UPSAMPLE_COUNT = int(12.5 * params.target_sample_rate / 1000)
self.sparse = False
if model is None:
self.model = dy.Model()
else:
self.model = model
input_size = self.UPSAMPLE_COUNT + self.params.mgc_order
self.upsample_w = []
self.upsample_b = []
for ii in range(self.UPSAMPLE_COUNT):
self.upsample_w.append(self.model.add_parameters((self.params.mgc_order, self.params.mgc_order)))
self.upsample_b.append(self.model.add_parameters((self.params.mgc_order)))
hidden_w = []
hidden_b = []
for layer_size in self.HIDDEN_SIZE:
hidden_w.append(self.model.add_parameters((layer_size, input_size)))
hidden_b.append(self.model.add_parameters((layer_size)))
input_size = layer_size
// self.networks.append([hidden_w, hidden_b])
self.mlp = [hidden_w, hidden_b]
self.mean_w = self.model.add_parameters((1, input_size))
self.mean_b = self.model.add_parameters((1))
self.stdev_w = self.model.add_parameters((1, input_size))
self.stdev_b = self.model.add_parameters((1))
self.trainer = dy.AdamTrainer(self.model, alpha=params.learning_rate)
self.dio = DatasetIO()
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 17
Instances
Project Name: tiberiu44/TTS-Cube
Commit Name: 18857c333e04b6815ec1f2ab9fcec1c0a0ae7bfd
Time: 2018-11-01
Author: tibi@racai.ro
File Name: cube/models/vocoder.py
Class Name: BeeCoder
Method Name: __init__
Project Name: tiberiu44/TTS-Cube
Commit Name: 18857c333e04b6815ec1f2ab9fcec1c0a0ae7bfd
Time: 2018-11-01
Author: tibi@racai.ro
File Name: cube/models/vocoder.py
Class Name: BeeCoder
Method Name: __init__
Project Name: tiberiu44/TTS-Cube
Commit Name: 288e2868ce5f35a9c8ecf3e3fa913f293adcf7e7
Time: 2018-10-31
Author: boros@adobe.com
File Name: cube/models/vocoder.py
Class Name: BeeCoder
Method Name: __init__
Project Name: tiberiu44/TTS-Cube
Commit Name: 2c6ce0ebfa9537246878e8fb9144e0c879fca17d
Time: 2018-10-22
Author: tibi@racai.ro
File Name: cube/models/vocoder.py
Class Name: BeeCoder
Method Name: __init__