f3d79e3fe7f6450f804e8f41935b3e491a99f7e3,models/official/mnasnet/mnasnet_main.py,,,#,37
Before Change
help="The Cloud TPU to use for training. This should be either the name "
"used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 url.")
flags.DEFINE_string(
"gcp_project",
default=None,
help="Project name for the Cloud TPU-enabled project. If not specified, we "
"will attempt to automatically detect the GCE project from metadata.")
flags.DEFINE_string(
"tpu_zone",
default=None,
help="GCE zone where the Cloud TPU is located in. If not specified, we "
"will attempt to automatically detect the GCE project from metadata.")
// Model specific flags
flags.DEFINE_string(
"data_dir",
default=FAKE_DATA_DIR,
help=("The directory where the ImageNet input data is stored. Please see"
" the README.md for the expected data format."))
flags.DEFINE_string(
"model_dir",
default=None,
help=("The directory where the model and training/evaluation summaries are"
" stored."))
flags.DEFINE_string(
"model_name",
default="mnasnet-a1",
help=(
"The model name to select models among existing MnasNet configurations."
))
flags.DEFINE_enum("mode", "train_and_eval",
["train_and_eval", "train", "eval", "export_only"],
"One of {"train_and_eval", "train", "eval", "export_only"}.")
flags.DEFINE_integer(
"train_steps",
default=437898,
help=("The number of steps to use for training. Default is 437898 steps"
" which is approximately 350 epochs at batch size 1024. This flag"
" should be adjusted according to the --train_batch_size flag."))
flags.DEFINE_integer("input_image_size", default=224, help="Input image size.")
flags.DEFINE_integer(
"train_batch_size", default=1024, help="Batch size for training.")
flags.DEFINE_integer(
"eval_batch_size", default=1024, help="Batch size for evaluation.")
flags.DEFINE_integer(
"num_train_images", default=1281167, help="Size of training data set.")
flags.DEFINE_integer(
"num_eval_images", default=50000, help="Size of evaluation data set.")
flags.DEFINE_integer(
"steps_per_eval",
default=6255,
help=("Controls how often evaluation is performed. Since evaluation is"
" fairly expensive, it is advised to evaluate as infrequently as"
" possible (i.e. up to --train_steps, which evaluates the model only"
" after finishing the entire training regime)."))
flags.DEFINE_integer(
"eval_timeout",
default=None,
help="Maximum seconds between checkpoints before evaluation terminates.")
flags.DEFINE_bool(
"skip_host_call",
default=False,
help=("Skip the host_call which is executed every training step. This is"
" generally used for generating training summaries (train loss,"
" learning rate, etc...). When --skip_host_call=false, there could"
" be a performance drop if host_call function is slow and cannot"
" keep up with the TPU-side computation."))
flags.DEFINE_integer(
"iterations_per_loop",
default=1251,
help=("Number of steps to run on TPU before outfeeding metrics to the CPU."
" If the number of iterations in the loop would exceed the number of"
" train steps, the loop will exit before reaching"
" --iterations_per_loop. The larger this value is, the higher the"
" utilization on the TPU."))
flags.DEFINE_integer(
"num_parallel_calls",
default=64,
After Change
from tensorflow.python.keras import backend as K
common_tpu_flags.define_common_tpu_flags()
common_hparams_flags.define_common_hparams_flags()
FLAGS = flags.FLAGS
FAKE_DATA_DIR = "gs://cloud-tpu-test-datasets/fake_imagenet"
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 7
Instances Project Name: tensorflow/tpu
Commit Name: f3d79e3fe7f6450f804e8f41935b3e491a99f7e3
Time: 2019-07-02
Author: gardener@tensorflow.org
File Name: models/official/mnasnet/mnasnet_main.py
Class Name:
Method Name:
Project Name: tensorflow/tpu
Commit Name: 69d221deb018beed51b2f5216ca34c61cca92858
Time: 2019-07-03
Author: gardener@tensorflow.org
File Name: models/official/squeezenet/squeezenet_main.py
Class Name:
Method Name:
Project Name: tensorflow/tpu
Commit Name: 377dbd0c1dc2ac1cf90556e9a4a5ecccbfa65a93
Time: 2019-04-23
Author: allencwang@google.com
File Name: models/official/mobilenet/mobilenet.py
Class Name:
Method Name:
Project Name: tensorflow/tpu
Commit Name: f3d79e3fe7f6450f804e8f41935b3e491a99f7e3
Time: 2019-07-02
Author: gardener@tensorflow.org
File Name: models/official/mnasnet/mnasnet_main.py
Class Name:
Method Name: