a800e9b12cb38767fc9815868b4f86f4d0380205,official/vision/beta/projects/yolo/modeling/layers/nn_blocks.py,CSPTiny,build,#CSPTiny#Any#,432
Before Change
super().__init__(**kwargs)
def build(self, input_shape):
self._convlayer1 = DarkConv(filters=self._filters,
kernel_size=(3, 3),
strides=(1, 1),
padding="same",
use_bias=self._use_bias,
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
kernel_regularizer=self._kernel_regularizer,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._conv_activation,
leaky_alpha=self._leaky_alpha)
self._convlayer2 = DarkConv(filters=self._filters // 2,
kernel_size=(3, 3),
strides=(1, 1),
After Change
super().__init__(**kwargs)
def build(self, input_shape):
_dark_conv_args = {"use_bias" : self._use_bias,
"kernel_initializer" : self._kernel_initializer,
"bias_initializer" : self._bias_initializer,
"bias_regularizer" : self._bias_regularizer,
"use_bn" : self._use_bn,
"use_sync_bn" : self._use_sync_bn,
"norm_momentum" : self._norm_moment,
"norm_epsilon" : self._norm_epsilon,
"activation" : self._conv_activation,
"kernel_regularizer" : self._kernel_regularizer,
"leaky_alpha" : self._leaky_alpha
}
self._convlayer1 = DarkConv(filters=self._filters,
kernel_size=(3, 3),
strides=(1, 1),
padding="same",
**_dark_conv_args)
self._convlayer2 = DarkConv(filters=self._filters // 2,
kernel_size=(3, 3),
strides=(1, 1),
padding="same",
use_bias=self._use_bias,
groups = self._groups,
group_id = self._group_id,
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
bias_regularizer=self._bias_regularizer,
kernel_regularizer=self._kernel_regularizer,
use_bn=self._use_bn,
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_moment,
norm_epsilon=self._norm_epsilon,
activation=self._conv_activation,
leaky_alpha=self._leaky_alpha)
self._convlayer3 = DarkConv(filters=self._filters // 2,
kernel_size=(3, 3),
strides=(1, 1),
padding="same",
**_dark_conv_args)
self._convlayer4 = DarkConv(filters=self._filters,
kernel_size=(1, 1),
strides=(1, 1),
padding="same",
**_dark_conv_args)
self._maxpool = tf.keras.layers.MaxPool2D(pool_size=2,
strides=2,
padding="same",
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 10
Instances
Project Name: tensorflow/models
Commit Name: a800e9b12cb38767fc9815868b4f86f4d0380205
Time: 2020-11-07
Author: 54074879+The-Indian-Chinna@users.noreply.github.com
File Name: official/vision/beta/projects/yolo/modeling/layers/nn_blocks.py
Class Name: CSPTiny
Method Name: build
Project Name: tensorflow/models
Commit Name: a800e9b12cb38767fc9815868b4f86f4d0380205
Time: 2020-11-07
Author: 54074879+The-Indian-Chinna@users.noreply.github.com
File Name: official/vision/beta/projects/yolo/modeling/layers/nn_blocks.py
Class Name: CSPTiny
Method Name: build
Project Name: tensorflow/models
Commit Name: a800e9b12cb38767fc9815868b4f86f4d0380205
Time: 2020-11-07
Author: 54074879+The-Indian-Chinna@users.noreply.github.com
File Name: official/vision/beta/projects/yolo/modeling/layers/nn_blocks.py
Class Name: CSPDownSample
Method Name: build
Project Name: tensorflow/models
Commit Name: a800e9b12cb38767fc9815868b4f86f4d0380205
Time: 2020-11-07
Author: 54074879+The-Indian-Chinna@users.noreply.github.com
File Name: official/vision/beta/projects/yolo/modeling/layers/nn_blocks.py
Class Name: DarkResidual
Method Name: build