20bfe4e1093bdd85d27d49f6c06c3e00f6f769b0,test/nn/conv/test_dna_conv.py,,test_dna_conv,#,5
 
Before Change
    assert conv.__repr__() == "DNAConv(32, heads=4, groups=8)"
    assert conv(x, edge_index).size() == (num_nodes, channels)
    jitcls = conv.jittable(x=x, edge_index=edge_index)
    jitconv = jitcls(channels, heads=4, groups=8, dropout=0.5)
    jitconv.load_state_dict(conv.state_dict())
    jittedconv = torch.jit.script(jitconv)
    conv.eval()
    jitconv.eval()
    jittedconv.eval()
    assert (torch.abs(conv(x, edge_index) -
            jitconv(x, edge_index)) < 1e-6).all().item()
    assert (torch.abs(conv(x, edge_index) -
            jittedconv(x, edge_index)) < 1e-6).all().item()
    conv = DNAConv(channels, heads=1, groups=1, dropout=0.5)
    assert conv.__repr__() == "DNAConv(32, heads=1, groups=1)"
    assert conv(x, edge_index).size() == (num_nodes, channels)
    jitcls = conv.jittable(x=x, edge_index=edge_index)
    jitconv = jitcls(channels, heads=1, groups=1, dropout=0.5)
    jitconv.load_state_dict(conv.state_dict())
    jittedconv = torch.jit.script(jitconv)
    conv.eval()
    jitconv.eval()
    jittedconv.eval()
    assert (torch.abs(conv(x, edge_index) -
            jitconv(x, edge_index)) < 1e-6).all().item()
    assert (torch.abs(conv(x, edge_index) -
            jittedconv(x, edge_index)) < 1e-6).all().item()
    conv = DNAConv(channels, heads=1, groups=1, dropout=0.5, cached=True)
    conv(x, edge_index).size() == (num_nodes, channels)
    conv(x, edge_index).size() == (num_nodes, channels)
    jitcls = conv.jittable(x=x, edge_index=edge_index)
    jitconv = jitcls(channels, heads=1, groups=1, dropout=0.5, cached=True)
    jitconv.load_state_dict(conv.state_dict())
    jittedconv = torch.jit.script(jitconv)
    conv.eval()
    jitconv.eval()
    jittedconv.eval()
    assert (torch.abs(conv(x, edge_index) -
            jitconv(x, edge_index)) < 1e-6).all().item()
    assert (torch.abs(conv(x, edge_index) -
            jittedconv(x, edge_index)) < 1e-6).all().item()
After Change
    jit_conv = conv.jittable(x=x, edge_index=edge_index)
    jit_conv = torch.jit.script(jit_conv)
    assert jit_conv(x, edge_index).tolist() == out.tolist()
    conv = DNAConv(channels, heads=1, groups=1, dropout=0.0, cached=True)
    out = conv(x, edge_index)
    out = conv(x, edge_index)

In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 14
Instances
 Project Name: rusty1s/pytorch_geometric
 Commit Name: 20bfe4e1093bdd85d27d49f6c06c3e00f6f769b0
 Time: 2020-06-09
 Author: matthias.fey@tu-dortmund.de
 File Name: test/nn/conv/test_dna_conv.py
 Class Name: 
 Method Name: test_dna_conv
 Project Name: rusty1s/pytorch_geometric
 Commit Name: 20bfe4e1093bdd85d27d49f6c06c3e00f6f769b0
 Time: 2020-06-09
 Author: matthias.fey@tu-dortmund.de
 File Name: test/nn/conv/test_dna_conv.py
 Class Name: 
 Method Name: test_dna_conv
 Project Name: rusty1s/pytorch_geometric
 Commit Name: 14fc2f8fd8e1741145d6b6ef0c052792ae01a99d
 Time: 2020-06-08
 Author: matthias.fey@tu-dortmund.de
 File Name: test/nn/conv/test_gmm_conv.py
 Class Name: 
 Method Name: test_gmm_conv
 Project Name: rusty1s/pytorch_geometric
 Commit Name: f3d0dfcb7caf50d123df02773495e5b52a92bd76
 Time: 2020-06-09
 Author: matthias.fey@tu-dortmund.de
 File Name: test/nn/conv/test_gat_conv.py
 Class Name: 
 Method Name: test_gat_conv