45cc6da8a8242d041b71ee95e2caaff4569bcddb,tslearn/svm.py,TimeSeriesSVC,predict_log_proba,#TimeSeriesSVC#Any#,241
Before Change
X = check_array(X, allow_nd=True)
if len(X.shape) == 2:
warnings.warn("2-Dimensional data passed. Assuming these are "
"{} 1-dimensional timeseries".format(X.shape[0]))
X = X.reshape((X.shape) + (1,))
sklearn_X = _prepare_ts_datasets_sklearn(X)
return super(TimeSeriesSVC, self).predict_log_proba(sklearn_X)
def predict_proba(self, X):
After Change
def predict_log_proba(self, X):
X = check_array(X, allow_nd=True)
check_is_fitted(self, "svm_estimator_")
sklearn_X = _prepare_ts_datasets_sklearn(X)
return self.svm_estimator_.predict_log_proba(sklearn_X)
In pattern: SUPERPATTERN
Frequency: 5
Non-data size: 15
Instances
Project Name: rtavenar/tslearn
Commit Name: 45cc6da8a8242d041b71ee95e2caaff4569bcddb
Time: 2019-07-09
Author: givdwiel.vandewiele@ugent.be
File Name: tslearn/svm.py
Class Name: TimeSeriesSVC
Method Name: predict_log_proba
Project Name: rtavenar/tslearn
Commit Name: 45cc6da8a8242d041b71ee95e2caaff4569bcddb
Time: 2019-07-09
Author: givdwiel.vandewiele@ugent.be
File Name: tslearn/svm.py
Class Name: TimeSeriesSVC
Method Name: score
Project Name: rtavenar/tslearn
Commit Name: 45cc6da8a8242d041b71ee95e2caaff4569bcddb
Time: 2019-07-09
Author: givdwiel.vandewiele@ugent.be
File Name: tslearn/svm.py
Class Name: TimeSeriesSVC
Method Name: decision_function
Project Name: rtavenar/tslearn
Commit Name: 45cc6da8a8242d041b71ee95e2caaff4569bcddb
Time: 2019-07-09
Author: givdwiel.vandewiele@ugent.be
File Name: tslearn/svm.py
Class Name: TimeSeriesSVC
Method Name: predict
Project Name: rtavenar/tslearn
Commit Name: 45cc6da8a8242d041b71ee95e2caaff4569bcddb
Time: 2019-07-09
Author: givdwiel.vandewiele@ugent.be
File Name: tslearn/svm.py
Class Name: TimeSeriesSVC
Method Name: predict_proba