4f5fad71c841a392237bf0c31c0175378e907c3b,art/attacks/carlini_unittest.py,TestCarliniL2,test_krclassifier,#TestCarliniL2#,177
Before Change
self.assertTrue((x_test_adv >= -0.0001).all())
target = np.argmax(params["y"], axis=1)
y_pred_adv = np.argmax(krc.predict(x_test_adv), axis=1)
logger.info("CW2 Target: %s", target)
logger.info("CW2 Actual: %s", y_pred_adv)
logger.info("CW2 Success Rate: %f", sum(target == y_pred_adv)/float(len(target)))
self.assertTrue((target == y_pred_adv).any())
// Second attack
cl2m = CarliniL2Method(classifier=krc, targeted=False, max_iter=10, binary_search_steps=10,
learning_rate=2e-2, initial_const=3, decay=1e-2)
params = {"y": random_targets(y_test, krc.nb_classes)}
x_test_adv = cl2m.generate(x_test, **params)
self.assertFalse((x_test == x_test_adv).all())
self.assertTrue((x_test_adv <= 1.0001).all())
self.assertTrue((x_test_adv >= -0.0001).all())
target = np.argmax(params["y"], axis=1)
y_pred_adv = np.argmax(krc.predict(x_test_adv), axis=1)
logger.info("CW2 Target: %s", target)
logger.info("CW2 Actual: %s", y_pred_adv)
logger.info("CW2 Success Rate: %f", sum(target != y_pred_adv)/float(len(target)))
self.assertTrue((target != y_pred_adv).all())
// Third attack
cl2m = CarliniL2Method(classifier=krc, targeted=False, max_iter=10, binary_search_steps=10,
learning_rate=2e-2, initial_const=3, decay=1e-2)
params = {}
x_test_adv = cl2m.generate(x_test, **params)
self.assertFalse((x_test == x_test_adv).all())
self.assertTrue((x_test_adv <= 1.0001).all())
self.assertTrue((x_test_adv >= -0.0001).all())
y_pred = np.argmax(krc.predict(x_test), axis=1)
y_pred_adv = np.argmax(krc.predict(x_test_adv), axis=1)
logger.info("CW2 Target: %s", y_pred)
logger.info("CW2 Actual: %s", y_pred_adv)
logger.info("CW2 Success Rate: %f", sum(y_pred != y_pred_adv)/float(len(y_pred)))
self.assertTrue((y_pred != y_pred_adv).any())
def test_ptclassifier(self):
After Change
self.assertTrue((x_test_adv >= -0.0001).all())
target = np.argmax(params["y"], axis=1)
y_pred_adv = np.argmax(krc.predict(x_test_adv), axis=1)
print("CW2 Target: %s" % target)
print("CW2 Actual: %s" % y_pred_adv)
print("CW2 Success Rate: %f" % (sum(target == y_pred_adv)/float(len(target))))
self.assertTrue((target == y_pred_adv).any())
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 12
Instances
Project Name: IBM/adversarial-robustness-toolbox
Commit Name: 4f5fad71c841a392237bf0c31c0175378e907c3b
Time: 2018-07-26
Author: molloyim@us.ibm.com
File Name: art/attacks/carlini_unittest.py
Class Name: TestCarliniL2
Method Name: test_krclassifier
Project Name: IBM/adversarial-robustness-toolbox
Commit Name: 4f5fad71c841a392237bf0c31c0175378e907c3b
Time: 2018-07-26
Author: molloyim@us.ibm.com
File Name: art/attacks/carlini_unittest.py
Class Name: TestCarliniL2
Method Name: test_tfclassifier
Project Name: IBM/adversarial-robustness-toolbox
Commit Name: 4f5fad71c841a392237bf0c31c0175378e907c3b
Time: 2018-07-26
Author: molloyim@us.ibm.com
File Name: art/attacks/carlini_unittest.py
Class Name: TestCarliniL2
Method Name: test_ptclassifier
Project Name: IBM/adversarial-robustness-toolbox
Commit Name: 4f5fad71c841a392237bf0c31c0175378e907c3b
Time: 2018-07-26
Author: molloyim@us.ibm.com
File Name: art/attacks/carlini_unittest.py
Class Name: TestCarliniL2
Method Name: test_krclassifier