b4910f5fc768b1304099295a8d8d2d8d08474469,src/graph_transpiler/webdnn/graph/operators/unpooling_2d.py,Unpooling2D,__call__,#Unpooling2D#Any#,43
Before Change
def __call__(self, x: Variable):
self.append_input("x", x)
return self.exec()
def exec(self):
x = self.inputs["x"]
x_shape_dict = x.shape_dict
After Change
self.parameters["padding"] = to_tuple(padding)
self.parameters["outsize"] = to_tuple(outsize)
def __call__(self, x: Variable):
x_shape_dict = x.shape_dict
N = x_shape_dict[Axis.N]
H2 = self.outsize[0]
W2 = self.outsize[1]
C2 = x_shape_dict[Axis.C]
y = Variable([N, H2, W2, C2], OrderNHWC)
y.change_order(x.order) // output same order as input to preserve following reshape semantics
for axis in x.order.axes:
if axis == Axis.H or axis == Axis.W:
continue
self.attributes.add(Tensorwise(axis))
self.append_input("x", x)
self.append_output("y", y)
return y,
@property
def ksize(self) -> Tuple[int, int]:
return self.parameters["ksize"]
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 17
Instances
Project Name: mil-tokyo/webdnn
Commit Name: b4910f5fc768b1304099295a8d8d2d8d08474469
Time: 2018-01-25
Author: y.kikura@gmail.com
File Name: src/graph_transpiler/webdnn/graph/operators/unpooling_2d.py
Class Name: Unpooling2D
Method Name: __call__
Project Name: mil-tokyo/webdnn
Commit Name: b4910f5fc768b1304099295a8d8d2d8d08474469
Time: 2018-01-25
Author: y.kikura@gmail.com
File Name: src/graph_transpiler/webdnn/graph/operators/reduce.py
Class Name: Reduce
Method Name: __call__
Project Name: mil-tokyo/webdnn
Commit Name: b4910f5fc768b1304099295a8d8d2d8d08474469
Time: 2018-01-25
Author: y.kikura@gmail.com
File Name: src/graph_transpiler/webdnn/graph/operators/unpooling_2d.py
Class Name: Unpooling2D
Method Name: __call__
Project Name: mil-tokyo/webdnn
Commit Name: b4910f5fc768b1304099295a8d8d2d8d08474469
Time: 2018-01-25
Author: y.kikura@gmail.com
File Name: src/graph_transpiler/webdnn/graph/operators/reinterpret_axis.py
Class Name: ReinterpretAxis
Method Name: __call__