8565a366de87d82dc19c3386b4a83359be1aa275,autosklearn/pipeline/components/classification/liblinear_svc.py,LibLinear_SVC,get_hyperparameter_search_space,#Any#,87

Before Change


    def get_hyperparameter_search_space(dataset_properties=None):
        cs = ConfigurationSpace()

        penalty = cs.add_hyperparameter(CategoricalHyperparameter(
            "penalty", ["l1", "l2"], default="l2"))
        loss = cs.add_hyperparameter(CategoricalHyperparameter(
            "loss", ["hinge", "squared_hinge"], default="squared_hinge"))
        dual = cs.add_hyperparameter(Constant("dual", "False"))
        // This is set ad-hoc
        tol = cs.add_hyperparameter(UniformFloatHyperparameter(
            "tol", 1e-5, 1e-1, default=1e-4, log=True))
        C = cs.add_hyperparameter(UniformFloatHyperparameter(
            "C", 0.03125, 32768, log=True, default=1.0))
        multi_class = cs.add_hyperparameter(Constant("multi_class", "ovr"))
        // These are set ad-hoc
        fit_intercept = cs.add_hyperparameter(Constant("fit_intercept", "True"))
        intercept_scaling = cs.add_hyperparameter(Constant(
            "intercept_scaling", 1))

        penalty_and_loss = ForbiddenAndConjunction(

After Change


    def get_hyperparameter_search_space(dataset_properties=None):
        cs = ConfigurationSpace()

        penalty = CategoricalHyperparameter(
            "penalty", ["l1", "l2"], default="l2")
        loss = CategoricalHyperparameter(
            "loss", ["hinge", "squared_hinge"], default="squared_hinge")
        dual = Constant("dual", "False")
        // This is set ad-hoc
        tol = UniformFloatHyperparameter(
            "tol", 1e-5, 1e-1, default=1e-4, log=True)
        C = UniformFloatHyperparameter(
            "C", 0.03125, 32768, log=True, default=1.0)
        multi_class = Constant("multi_class", "ovr")
        // These are set ad-hoc
        fit_intercept = Constant("fit_intercept", "True")
        intercept_scaling = Constant("intercept_scaling", 1)
        cs.add_hyperparameters([penalty, loss, dual, tol, C, multi_class,
                                fit_intercept, intercept_scaling])

        penalty_and_loss = ForbiddenAndConjunction(
            ForbiddenEqualsClause(penalty, "l1"),
            ForbiddenEqualsClause(loss, "hinge")
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 21

Instances


Project Name: automl/auto-sklearn
Commit Name: 8565a366de87d82dc19c3386b4a83359be1aa275
Time: 2017-02-04
Author: feurerm@informatik.uni-freiburg.de
File Name: autosklearn/pipeline/components/classification/liblinear_svc.py
Class Name: LibLinear_SVC
Method Name: get_hyperparameter_search_space


Project Name: automl/auto-sklearn
Commit Name: 8565a366de87d82dc19c3386b4a83359be1aa275
Time: 2017-02-04
Author: feurerm@informatik.uni-freiburg.de
File Name: autosklearn/pipeline/components/feature_preprocessing/liblinear_svc_preprocessor.py
Class Name: LibLinear_Preprocessor
Method Name: get_hyperparameter_search_space


Project Name: automl/auto-sklearn
Commit Name: 8565a366de87d82dc19c3386b4a83359be1aa275
Time: 2017-02-04
Author: feurerm@informatik.uni-freiburg.de
File Name: autosklearn/pipeline/components/classification/liblinear_svc.py
Class Name: LibLinear_SVC
Method Name: get_hyperparameter_search_space


Project Name: automl/auto-sklearn
Commit Name: 8565a366de87d82dc19c3386b4a83359be1aa275
Time: 2017-02-04
Author: feurerm@informatik.uni-freiburg.de
File Name: autosklearn/pipeline/components/regression/liblinear_svr.py
Class Name: LibLinear_SVR
Method Name: get_hyperparameter_search_space