d4f36a7624c780f2d3cd38aaf7c6ee61f84739c8,examples/catboost_simple.py,,objective,#Any#,30
Before Change
"boosting_type": trial.suggest_categorical("boosting_type", ["Ordered", "Plain"])
}
if param["boosting_type"] == "Ordered":
param["learning_rate"] = trial.suggest_loguniform("learning_rate", 1e-4, 0.1)
if param["boosting_type"] == "Plain":
param["learning_rate"] = trial.suggest_loguniform("learning_rate", 1e-6, 1e-2)
gbm = cb.CatBoostClassifier(**param)
After Change
}
if param["bootstrap_type"] == "Bayesian":
param["bagging_temperature"] = trial.suggest_uniform("bagging_temperature", 0, 10)
elif param["bootstrap_type"] == "Bernoulli":
param["subsample"] = trial.suggest_uniform("subsample", 0, 1)
elif param["bootstrap_type"] == "MVS":
param["mvs_head_fraction"] = trial.suggest_uniform("mvs_head_fraction", 0, 1)
gbm = cb.CatBoostClassifier(**param)
gbm.fit(train_x, train_y, eval_set=[(test_x, test_y)], verbose=0, early_stopping_rounds=100)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 9
Instances
Project Name: pfnet/optuna
Commit Name: d4f36a7624c780f2d3cd38aaf7c6ee61f84739c8
Time: 2019-08-16
Author: stephane.couvreur.sueron@gmail.com
File Name: examples/catboost_simple.py
Class Name:
Method Name: objective
Project Name: pfnet/optuna
Commit Name: d4f36a7624c780f2d3cd38aaf7c6ee61f84739c8
Time: 2019-08-16
Author: stephane.couvreur.sueron@gmail.com
File Name: examples/catboost_simple.py
Class Name:
Method Name: objective
Project Name: pfnet/optuna
Commit Name: 186d05b75a91c7ec57b54da68783c2853ccbc706
Time: 2019-10-06
Author: eowner@gmail.com
File Name: examples/pruning/lightgbm_integration.py
Class Name:
Method Name: objective
Project Name: pfnet/optuna
Commit Name: 186d05b75a91c7ec57b54da68783c2853ccbc706
Time: 2019-10-06
Author: eowner@gmail.com
File Name: examples/lightgbm_simple.py
Class Name:
Method Name: objective