e87334a5fbe16bd1f16357b452036b578ca3b5f8,tests/automated_tests.py,,,#,4
Before Change
// Make this an OrderedDict so that we run the tests in a consistent order
test_names = OrderedDict([
("optimize_final_model_classification", classifier_tests.optimize_final_model_classification),
("perform_feature_selection_true_classification", classifier_tests.perform_feature_selection_true_classification),
("perform_feature_selection_false_classification", classifier_tests.perform_feature_selection_false_classification),
("perform_feature_scaling_true_classification", classifier_tests.perform_feature_scaling_true_classification),
("perform_feature_scaling_false_classification", classifier_tests.perform_feature_scaling_false_classification),
("user_input_func_classification", classifier_tests.user_input_func_classification),
("binary_classification_predict_on_Predictor_instance", classifier_tests.binary_classification_predict_on_Predictor_instance),
("multilabel_classification_predict_on_Predictor_instance", classifier_tests.multilabel_classification_predict_on_Predictor_instance),
("binary_classification_predict_proba_on_Predictor_instance", classifier_tests.binary_classification_predict_proba_on_Predictor_instance),
("getting_single_predictions_classification", classifier_tests.getting_single_predictions_classification),
("feature_learning_getting_single_predictions_classification", classifier_tests.feature_learning_getting_single_predictions_classification),
("getting_single_predictions_nlp_date_multilabel_classification", classifier_tests.getting_single_predictions_nlp_date_multilabel_classification),
("categorical_ensembling_classification", classifier_tests.categorical_ensembling_classification),
("optimize_final_model_regression", regressor_tests.optimize_final_model_regression),
("perform_feature_selection_true_regression", regressor_tests.perform_feature_selection_true_regression),
("perform_feature_selection_false_regression", regressor_tests.perform_feature_selection_false_regression),
("perform_feature_scaling_true_regression", regressor_tests.perform_feature_scaling_true_regression),
("perform_feature_scaling_false_regression", regressor_tests.perform_feature_scaling_false_regression),
("getting_single_predictions_regression", regressor_tests.getting_single_predictions_regression),
("feature_learning_getting_single_predictions_regression", regressor_tests.feature_learning_getting_single_predictions_regression),
("categorical_ensembling_regression", regressor_tests.categorical_ensembling_regression)
])
def test_generator():
for model_name in training_parameters["model_names"]:
After Change
// Make this an OrderedDict so that we run the tests in a consistent order
test_names = OrderedDict([
// ("optimize_final_model_classification", classifier_tests.optimize_final_model_classification),
("getting_single_predictions_classification", classifier_tests.getting_single_predictions_classification),
("feature_learning_getting_single_predictions_classification", classifier_tests.feature_learning_getting_single_predictions_classification),
("getting_single_predictions_multilabel_classification", classifier_tests.getting_single_predictions_multilabel_classification),
("categorical_ensembling_classification", classifier_tests.categorical_ensembling_classification),
("feature_learning_categorical_ensembling_getting_single_predictions_classification", classifier_tests.feature_learning_categorical_ensembling_getting_single_predictions_classification),
("optimize_final_model_regression", regressor_tests.optimize_final_model_regression),
("getting_single_predictions_regression", regressor_tests.getting_single_predictions_regression),
("feature_learning_getting_single_predictions_regression", regressor_tests.feature_learning_getting_single_predictions_regression),
("categorical_ensembling_regression", regressor_tests.categorical_ensembling_regression),
("feature_learning_categorical_ensembling_getting_single_predictions_regression", regressor_tests.feature_learning_categorical_ensembling_getting_single_predictions_regression)
])
def test_generator():
for model_name in training_parameters["model_names"]:
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 17
Instances
Project Name: ClimbsRocks/auto_ml
Commit Name: e87334a5fbe16bd1f16357b452036b578ca3b5f8
Time: 2017-04-17
Author: ClimbsBytes@gmail.com
File Name: tests/automated_tests.py
Class Name:
Method Name:
Project Name: ClimbsRocks/auto_ml
Commit Name: b1756fd255d0f921cd30537d55d0dfb2a6c8ad32
Time: 2017-04-17
Author: ClimbsBytes@gmail.com
File Name: tests/automated_tests.py
Class Name:
Method Name:
Project Name: ClimbsRocks/auto_ml
Commit Name: abc1fac1d64b8a914e0297c3618b0a929cfc7a79
Time: 2017-04-17
Author: ClimbsBytes@gmail.com
File Name: tests/automated_tests.py
Class Name:
Method Name: