7a1e5bf80d5a631fbc6a30a7d16ab4615d96ea5a,pb_bss/distribution/vmfmm.py,VMFMM,_predict,#VMFMM#Any#,29
Before Change
return self._predict(y)
def _predict(self, y):
log_pdf = self.vmf.log_pdf(y[..., None, :, :])
affiliation = np.log(self.weight)[..., :, None] + log_pdf
affiliation -= np.max(affiliation, axis=-2, keepdims=True)
np.exp(affiliation, out=affiliation)
denominator = np.maximum(
np.einsum("...kn->...n", affiliation)[..., None, :],
np.finfo(affiliation.dtype).tiny,
)
affiliation /= denominator
return affiliation
class VMFMMTrainer:
The vMFMM can be used to cluster the embeddings.
After Change
return self._predict(y)
def _predict(self, y):
return log_pdf_to_affiliation(
self.weight[..., :, None],
self.vmf.log_pdf(y[..., None, :, :]),
)
class VMFMMTrainer:
The vMFMM can be used to cluster the embeddings.
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 22
Instances
Project Name: fgnt/pb_bss
Commit Name: 7a1e5bf80d5a631fbc6a30a7d16ab4615d96ea5a
Time: 2019-08-09
Author: mail@lukas-drude.de
File Name: pb_bss/distribution/vmfmm.py
Class Name: VMFMM
Method Name: _predict
Project Name: fgnt/pb_bss
Commit Name: 7a1e5bf80d5a631fbc6a30a7d16ab4615d96ea5a
Time: 2019-08-09
Author: mail@lukas-drude.de
File Name: pb_bss/distribution/ccsgmm.py
Class Name: CCSGMM
Method Name: _predict
Project Name: fgnt/pb_bss
Commit Name: 7a1e5bf80d5a631fbc6a30a7d16ab4615d96ea5a
Time: 2019-08-09
Author: mail@lukas-drude.de
File Name: pb_bss/distribution/cwmm.py
Class Name: CWMM
Method Name: _predict
Project Name: fgnt/pb_bss
Commit Name: 7a1e5bf80d5a631fbc6a30a7d16ab4615d96ea5a
Time: 2019-08-09
Author: mail@lukas-drude.de
File Name: pb_bss/distribution/vmfmm.py
Class Name: VMFMM
Method Name: _predict