e9aea97df1dc7878827ac193ba75cbea0b3ee351,ludwig/models/modules/sequence_decoders.py,SequenceGeneratorDecoder,__init__,#SequenceGeneratorDecoder#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#,32

Before Change


        self.embedding_size = embedding_size
        self.beam_width = beam_width
        self.num_layers = num_layers
        self.attention_mechanism = attention_mechanism
        self.tied_embeddings = tied_embeddings
        self.initializer = initializer
        self.regularize = regularize
        self.is_timeseries = is_timeseries
        self.num_classes = num_classes
        self.max_sequence_length = max_sequence_length

        if is_timeseries:
            self.vocab_size = 1
        else:
            self.vocab_size = self.num_classes

        self.embeddings_dec = Embedding(num_classes, embedding_size)
        self.decoder_cell = LSTMCell(state_size)

        if attention_mechanism:
            if attention_mechanism == "bahdanau":
                pass
            elif attention_mechanism == "luong":
                self.attention_mechanism = tfa.seq2seq.LuongAttention(
                    state_size,
                    None,  // todo tf2: confirm on need
                    memory_sequence_length=max_sequence_length  // todo tf2: confirm inputs or output seq length
                )
            else:
                raise ValueError(
                    "Attention specificaiton "{}" is invalid.  Valid values are "
                    ""bahdanau" or "luong".".format(self.attention_mechanism))

            self.decoder_cell = tfa.seq2seq.AttentionWrapper(
                self.decoder_cell,
                self.attention_mechanism
            )

        self.sampler = tfa.seq2seq.sampler.TrainingSampler()

        self.projection_layer = Dense(
            units=num_classes,
            use_bias=use_bias,
            kernel_initializer=weights_initializer,
            bias_initializer=bias_initializer,
            kernel_regularizer=weights_regularizer,
            bias_regularizer=bias_regularizer,
            activity_regularizer=activity_regularizer
        )

        self.decoder = \
            tfa.seq2seq.basic_decoder.BasicDecoder(self.decoder_cell,
                                                    self.sampler,

After Change



class SequenceGeneratorDecoder(Layer):
    def __init__(
            self,
            num_classes,
            cell_type="rnn",
            state_size=256,
            embedding_size=64,
            beam_width=1,
            num_layers=1,
            attention_mechanism=None,
            tied_embeddings=None,
            initializer=None,
            regularize=True,
            is_timeseries=False,
            max_sequence_length=0,
            use_bias=True,
            weights_initializer="glorot_uniform",
            bias_initializer="zeros",
            weights_regularizer=None,
            bias_regularizer=None,
            activity_regularizer=None,
            **kwargs
    ):
        super(SequenceGeneratorDecoder, self).__init__()

        self.cell_type = cell_type
        self.state_size = state_size
        self.embedding_size = embedding_size
        self.beam_width = beam_width
        self.num_layers = num_layers
        self.attention_mechanism = attention_mechanism
        self.tied_embeddings = tied_embeddings
        self.initializer = initializer
        self.regularize = regularize
        self.is_timeseries = is_timeseries
        self.num_classes = num_classes
        self.max_sequence_length = max_sequence_length

        if is_timeseries:
            self.vocab_size = 1
        else:
            self.vocab_size = self.num_classes

        self.decoder_embedding = tf.keras.layers.Embedding(
            input_dim=output_vocab_size,
            output_dim=embedding_dims)
        self.dense_layer = tf.keras.layers.Dense(output_vocab_size)
        self.decoder_rnncell = tf.keras.layers.LSTMCell(rnn_units)

        // Sampler
        self.sampler = tfa.seq2seq.sampler.TrainingSampler()

        self.attention_mechanism = None
        self.rnn_units = rnn_units

        print("setting up attention for", attention_mechanism)
        if attention_mechanism is not None:
            self.attention_mechanism = self.build_attention_mechanism(
                attention_mechanism,
                dense_units
            )
            self.decoder_rnncell = self.build_rnn_cell()

        self.decoder = tfa.seq2seq.BasicDecoder(self.decoder_rnncell,
                                                sampler=self.sampler,
                                                output_layer=self.dense_layer)
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 25

Instances


Project Name: uber/ludwig
Commit Name: e9aea97df1dc7878827ac193ba75cbea0b3ee351
Time: 2020-05-05
Author: jimthompson5802@gmail.com
File Name: ludwig/models/modules/sequence_decoders.py
Class Name: SequenceGeneratorDecoder
Method Name: __init__


Project Name: allenai/allennlp
Commit Name: a8f7adae8546cfac4473bd514b0070367d725f2e
Time: 2018-05-13
Author: pradeep.dasigi@gmail.com
File Name: allennlp/models/semantic_parsing/nlvr/nlvr_semantic_parser.py
Class Name: NlvrSemanticParser
Method Name: __init__


Project Name: mozilla/TTS
Commit Name: 0a92c6d5a7601fe0b1d8d5bf53ef1774c15647cc
Time: 2019-03-25
Author: egolge@mozilla.com
File Name: models/tacotron.py
Class Name: Tacotron
Method Name: __init__


Project Name: uber/ludwig
Commit Name: e9aea97df1dc7878827ac193ba75cbea0b3ee351
Time: 2020-05-05
Author: jimthompson5802@gmail.com
File Name: ludwig/models/modules/sequence_decoders.py
Class Name: SequenceGeneratorDecoder
Method Name: __init__