e7392399dfa3d64a87eb31dfdfc532ada310ea59,metric_learn/_util.py,,_initialize_metric_mahalanobis,#Any#Any#Any#Any#Any#Any#,597
Before Change
"require the {} to be strictly positive definite."
.format(*((matrix_name,) * 3)))
if return_inverse:
M_inv = np.dot(u / s, u.T)
return M, M_inv
else:
return M
After Change
"require the `{}` to be strictly positive definite."
.format(*((matrix_name,) * 2)))
elif not cov_is_definite:
warnings.warn("The covariance matrix is not invertible: "
"using the pseudo-inverse instead."
"To make the covariance matrix invertible"
" you can remove any linearly dependent features and/or "
"reduce the dimensionality of your input, "
"for instance using `sklearn.decomposition.PCA` as a "
"preprocessing step.")
M = _pseudo_inverse_from_eig(w, V)
if return_inverse:
return M, M_inv
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances Project Name: metric-learn/metric-learn
Commit Name: e7392399dfa3d64a87eb31dfdfc532ada310ea59
Time: 2020-02-04
Author: gabriel.rudloff@gmail.com
File Name: metric_learn/_util.py
Class Name:
Method Name: _initialize_metric_mahalanobis
Project Name: nipy/dipy
Commit Name: 3b7e54a6e69be493f27b74f7e3840558c8a7f34b
Time: 2015-12-31
Author: girard.gabriel@gmail.com
File Name: dipy/tracking/utils.py
Class Name:
Method Name: random_seeds_from_mask
Project Name: metric-learn/metric-learn
Commit Name: 85185175f356697f4a91feacaed2d3a9d70af95f
Time: 2019-06-12
Author: 31916524+wdevazelhes@users.noreply.github.com
File Name: metric_learn/rca.py
Class Name: RCA
Method Name: fit