00b4b8369e1b9f090e8dbdc17d9d1867e3e48674,smac/smbo/rf_with_instances.py,RandomForestWithInstances,predict,#RandomForestWithInstances#Any#,102
Before Change
X_ = np.concatenate((X_, I_), axis=1)
mu, var = super (RandomForestWithInstances, self).predict(X_)
return mu.mean(), var.mean()
After Change
X_ = np.concatenate((X_, I_), axis=1)
mean = np.zeros(Xtest.shape[0])
var = np.zeros(Xtest.shape[0])
// TODO: Would be nice if the random forest supports batch predictions
for i, x in enumerate(Xtest):
mean[i], var[i] = self.rf.predict(x)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances Project Name: automl/SMAC3
Commit Name: 00b4b8369e1b9f090e8dbdc17d9d1867e3e48674
Time: 2016-01-27
Author: springj@informatik.uni-freiburg.de
File Name: smac/smbo/rf_with_instances.py
Class Name: RandomForestWithInstances
Method Name: predict
Project Name: BindsNET/bindsnet
Commit Name: bbf309023a81e4213de94525886665651cc3de9c
Time: 2018-11-04
Author: djsaunde@umass.edu
File Name: bindsnet/conversion/__init__.py
Class Name: PassThroughNodes
Method Name: reset_
Project Name: facebookresearch/Horizon
Commit Name: 247203f29b7e841204c76d922c1ea5b2680c3663
Time: 2020-12-08
Author: czxttkl@fb.com
File Name: reagent/models/seq2slate.py
Class Name: DecoderPyTorch
Method Name: forward