bd35ff10b4c52b7b6d5a1a089f23bd89eea5346e,examples/pipelines/multitable/multitable.py,,,#,96
Before Change
product_name="Banana",
cutoff_time=pd.Timestamp("March 15, 2015"),
prediction_window=ft.Timedelta("4 weeks"),
training_window=ft.Timedelta("60 days"))
y = label_times["label"]
multitable = MLPipeline.from_ml_json(["dfs", "random_forest_classifier"])
After Change
order_products = pd.read_csv("data/Retail/order_products.csv")
label_times = pd.read_csv("data/Retail/label_times.csv")
X = label_times.sample(frac=0.8)
X_test = label_times.drop(X.index)
y = X["label"]
y_test = X_test["label"]
es = make_entity_set(orders, order_products)
multitable = MLPipeline.from_ml_json(["dfs", "random_forest_classifier"])
In pattern: SUPERPATTERN
Frequency: 4
Non-data size: 3
Instances
Project Name: HDI-Project/MLBlocks
Commit Name: bd35ff10b4c52b7b6d5a1a089f23bd89eea5346e
Time: 2018-05-26
Author: williamxue@Williams-MacBook-Pro.local
File Name: examples/pipelines/multitable/multitable.py
Class Name:
Method Name:
Project Name: HDI-Project/MLBlocks
Commit Name: 6a8929b5ccce8004f4babc3102390b3461911304
Time: 2018-05-26
Author: williamxue@Williams-MacBook-Pro.local
File Name: examples/pipelines/multitable/multitable.py
Class Name:
Method Name:
Project Name: Featuretools/featuretools
Commit Name: 54569447ac365a1967d026cfb5c2bd228cb513ec
Time: 2019-09-25
Author: christopherbunn@users.noreply.github.com
File Name: featuretools/entityset/timedelta.py
Class Name: Timedelta
Method Name: get_unit_type
Project Name: Featuretools/featuretools
Commit Name: 54569447ac365a1967d026cfb5c2bd228cb513ec
Time: 2019-09-25
Author: christopherbunn@users.noreply.github.com
File Name: featuretools/entityset/timedelta.py
Class Name: Timedelta
Method Name: __neg__